Những câu hỏi liên quan
VD
Xem chi tiết
TH
4 tháng 4 2022 lúc 20:29

d. Áp dụng BĐT Caushy Schwartz ta có:

\(x+y+\dfrac{1}{x}+\dfrac{1}{y}\le x+y+\dfrac{\left(1+1\right)^2}{x+y}=x+y+\dfrac{4}{x+y}\le1+\dfrac{4}{1}=5\)

-Dấu bằng xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)

Bình luận (5)
TH
4 tháng 4 2022 lúc 20:42

c. Bạn kiểm tra lại đề nhé.

b. \(5x\left(2-x\right)=-5x\left(x-2\right)=-5\left(x^2-2x\right)=-5\left(x^2-2x+1-1\right)=-5\left(x-1\right)^2+5\le5\)-Dấu bằng xảy ra \(\Leftrightarrow x=1\)

Bình luận (1)
NL
5 tháng 4 2022 lúc 22:58

a.

\(\left(80-2x\right)\left(50-2x\right)x=\dfrac{2}{3}\left(40-x\right)\left(50-2x\right)3x\le\dfrac{2}{3}\left(\dfrac{40-x+50-2x+3x}{3}\right)^3=18000\)

Dấu "=" xảy ra khi \(40-x=50-2x=3x\Leftrightarrow x=10\)

b.

\(5x\left(2-x\right)=5.x\left(2-x\right)\le\dfrac{5}{4}\left(x+2-x\right)^2=5\)

Dấu "=" xảy ra khi \(x=2-x\Rightarrow x=1\)

c.

Biểu thức này chỉ có min, ko có max

d.

\(x+y\le1\Rightarrow-\left(x+y\right)\ge-1\)

\(x+y+\dfrac{1}{x}+\dfrac{1}{y}=\left(4x+\dfrac{1}{x}\right)+\left(4y+\dfrac{1}{y}\right)-3\left(x+y\right)\ge2\sqrt{\dfrac{4x}{x}}+2\sqrt{\dfrac{4y}{y}}-3.1=5\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

Bình luận (0)
FA
Xem chi tiết
NT
30 tháng 1 2022 lúc 21:34

Chọn B

Bình luận (0)
MS
30 tháng 1 2022 lúc 21:38

Chọn D 

Bình luận (0)
NV
Xem chi tiết
CX
16 tháng 1 2017 lúc 13:55

Câu 1 : \(-a.\left(c-d\right)-d.\left(a+c\right)=-c.\left(a+d\right)\)

Ta có : \(VT=-a.\left(c-d\right)-d\left(a+c\right)\)

                 \(=-ac+ad-da-dc\)

                 \(=-ac-dc\)

                 \(=-c\left(a+d\right)=VP\)

\(\Rightarrow-a\left(c-d\right)-d\left(a+c\right)=-c\left(a+d\right)\left(đpcm\right)\)

Câu 2 : 

1,  \(x.\left(x+7\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x+7=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=-7\end{cases}}}\)

2, \(\left(x+12\right)\left(x-3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+12=0\\x-3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-12\\x=3\end{cases}}}\)

3, \(\left(-x+5\right)\left(3-x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}-x+5=0\\3-x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=3\end{cases}}}\)

4, \(x\left(2+x\right)\left(7-x\right)=0\)

\(\Rightarrow x=0;2+x=0\)hoặc \(7-x=0\)

\(\Rightarrow x=0;x=-2\)hoặc \(x=7\)

Bình luận (0)
NV
16 tháng 1 2017 lúc 14:34

Thanks Bạn!!

Bình luận (0)
DH
Xem chi tiết
NT
19 tháng 4 2023 lúc 8:31

Chọn C

Bình luận (1)
TV
Xem chi tiết
KK
26 tháng 1 2018 lúc 21:54

a.x(y+3)=3

=> x(y+3) ∈Ư(3)={-3;-1;1;3}

ta có bảng sau

x -3 -1 1 3
y+3 -1 -3 3 1
y -4 -6 0 -2

vậy x=-3 thì y=-4

x=-1 thì y=-6

x=1 thì y=0

x=3 thì y=-2

c.x+3⋮ x+1

=> (x+3)-(x+1)⋮(x+1)

=> (x+3-x-1)⋮(x+1)

=> 2⋮(x+1)

=> (x+1) ∈ Ư(2)={-2;-1;1;2}

=> x∈{-3;-2;0;1}

vậy x ∈{-3;-2;0;1}

b,d tương tự

Bình luận (1)
KK
26 tháng 1 2018 lúc 15:04

a.(x-2)(x+3)>0

=>\(\left[{}\begin{matrix}x-2>0\\x+3>0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x>2\\x>-3\end{matrix}\right.\)

=> x>2

vậy x>2

b.(x-2)(x-1)>0

=> \(\left[{}\begin{matrix}x-2>0\\x-1>0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x>2\\x>1\end{matrix}\right.\)

=> x>2

vậy x>2

c.(x-2)(x2+1)>0

=> \(\left[{}\begin{matrix}x-2>0\\x^2+1>0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x>2\\x^2>-1\Rightarrow x>\sqrt{-1}\end{matrix}\right.\)

vậy x>2

d.(x-1)(x+2)>0

=> \(\left[{}\begin{matrix}x-1>0\\x+2>0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x>1\\x>-2\end{matrix}\right.\)

=> x>1

vậy x>1

Bình luận (1)
TV
29 tháng 1 2018 lúc 19:50

Còn câu này nx bn ạ:

x^2.(x+2)<0

Tìm x

Giúp mk nhanh nha, mk cần gấp

Bình luận (0)
LT
Xem chi tiết
NH
29 tháng 6 2015 lúc 17:28

cái này dùng bảng xét dấu là nhanh nhất. mình làm mẫu cho một cái, bạn xem rồi tự tìm hiểu nha. nếu vẫn k hiểu thì liên hệ mình giải nốt cho. bảng xét dấu này lấy nghiệm của từng nhân tử rồi theo quy tắc phải cùng, trái khác để xét dấu

D= (x-2)(x+2).(4-x)(4+x)

a) C<0

nhìn bảng xét dấu ta có thể thấy rằng tích này âm trong 2 trường hợp: \(1\le x\le2\)và x>3

tương tự làm với câu 2 nha

Bình luận (0)
LT
Xem chi tiết
DV
29 tháng 6 2015 lúc 15:39

a) C < 0 <=>

hoặc x - 1 < 0 => x < 1

hoặc x - 2 < 0 => x < 2

hoặc x - 3 < 0 => x < 3

Vậy x < 3 thỏa mãn đề bài.

Bình luận (0)
HJ
Xem chi tiết
H24
Xem chi tiết
PP
Xem chi tiết
NT
8 tháng 4 2022 lúc 21:09

a: (x-1)(x-2)>0

=>x-2>0 hoặc x-1<0

=>x>2 hoặc x<1

b: \(\left(x-2\right)^2\cdot\left(x+1\right)\left(x-4\right)< 0\)

=>(x+1)(x-4)<0

=>-1<x<4

c: \(\dfrac{x^2\left(x-3\right)}{x-9}< 0\)

=>x-3/x-9<0

=>3<x<9

Bình luận (0)
NH
27 tháng 9 2024 lúc 6:55

c; \(\dfrac{5}{x}\) < 1 (đk \(x\ne\) 0)

⇒  \(\dfrac{5}{x}\) - 1 < 0 ⇒  \(\dfrac{5-x}{x}\) < 0; 5 - \(x=0\) ⇒ \(x=5\)

Lập bảng ta có:

\(x\)                 0                                  5
\(x-5\)        +       |              +                   0     -
\(x\)        -       0             +                    |       +
\(\dfrac{x-5}{x}\)        -      ||              +                    0      -

Theo bảng trên ta có  \(x\) \(\in\) ( - ∞; 0) \(\cup\) (5; +∞)

Vậy tập hợp nghiệm của bất phương trình đã cho là:

S = (- ∞; 0) \(\cup\) (5 ; + ∞)

 

Bình luận (0)