Giá trị của lim 3 n 3 + n n 2 bằng:
A. + ∞
B. - ∞
C.0
D. 1
giá trị của C = lim (n^3 + 1)/[n(2n+1)^2] =
Cai bai ben duoi bai nay y. Doc hieu chet lien. Ban nen xai go cong thuc de toi uu hon
\(C=\lim\limits\dfrac{n^3+1}{n\left(2n+1\right)^2}=\lim\limits\dfrac{n^3+1}{n\left(4n^2+4n+1\right)}=\lim\limits\dfrac{n^3+1}{4n^3+4n^2+n}=\lim\limits\dfrac{\dfrac{n^3}{n^3}+\dfrac{1}{n^3}}{\dfrac{4n^3}{n^3}+\dfrac{4n^2}{n^3}+\dfrac{n}{n^3}}=\dfrac{1}{4}\)
Xai cai nay go cong thuc di ban :v Doc ko hieu
giá trị của E = lim (căn bậc hai của n^3 + 2n) + 1/(n+2) =
\(E=\lim\limits\dfrac{\sqrt{n^3+2n}+1}{n+2}=\lim\limits\dfrac{\dfrac{\left(n^3+2n\right)^{\dfrac{1}{2}}}{n}+\dfrac{1}{n}}{\dfrac{n}{n}+\dfrac{2}{n}}=\dfrac{\dfrac{n^{\dfrac{3}{2}}}{n}}{\dfrac{n}{n}}=0\)
giá trị của B = lim (2n+3)/(n^2 + 1) =
\(B=\lim\limits\dfrac{2n+3}{n^2+1}=\lim\limits\dfrac{\dfrac{2n}{n^2}+\dfrac{3}{n^2}}{\dfrac{n^2}{n^2}+\dfrac{1}{n^2}}=0\)
Biết \(lim\dfrac{1^3+2^3+...+n^3}{n^3+1}=\dfrac{a}{b}\left(a,b\in N\right)\). Tính giá trị của \(2a^2+b^2\)?
Thôi chắc khó mỗi cái phân tích tổng trên tử thôi nhỉ :v?
Xet \(S'=1.2.3+2.3.4+3.4.5+...+n\left(n+1\right)\left(n+2\right)\)
\(\Rightarrow4S'=1.2.3.4+2.3.4.4+3.4.5.4+...+4n\left(n+1\right)\left(n+2\right)\)
\(4S'=1.2.3.4+2.3.4.\left(5-1\right)+3.4.5.\left(6-2\right)+...+4n\left(n+1\right)\left(n+2\right)\left[\left(n+3\right)-\left(n-1\right)\right]\)
\(4S'=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+...+n\left(n+1\right)\left(n+2\right)\left(n+3\right)-n\left(n+1\right)\left(n+2\right)\left(n-1\right)\)
\(\Rightarrow4S'=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\Leftrightarrow S'=\dfrac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}{4}\)
Lai co \(n\left(n+1\right)\left(n+2\right)=n^3+3n^2+2n\) \(\Rightarrow S'=\left(1^3+2^3+...+n^3\right)+3.\left(1^2+2^2+...+n^2\right)+2\left(1+2+...+n\right)\)
Mat khac \(S''=1^2+2^2+...+n^2;S'''=1+2+3+...+n\)\(S'''=\dfrac{n\left(n+1\right)}{2}\left(toan-lop-6\right)\)
Xet \(S''=1^2+2^2+...+n^2\)
\(S_1''=1.2+2.3+3.4+...+n\left(n+1\right)\)
\(\Rightarrow3S_1''=1.2.3+2.3.3+3.4.3+...+3n\left(n+1\right)\)
\(3S_1''=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...n\left(n+1\right)\left[\left(n+2\right)-\left(n-1\right)\right]\)
\(\Rightarrow3S''_1=n\left(n+1\right)\left(n+2\right)\Leftrightarrow S''_1=\dfrac{n\left(n+1\right)\left(n+2\right)}{3}\)
lai co: \(S_1''=\left(1^2+2^2+...+n^2\right)+\left(1+2+...+n\right)=S''+S'''=S''+\dfrac{n\left(n+1\right)}{2}\)
\(\Rightarrow S''=S_1''-\dfrac{n\left(n+1\right)}{2}=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\)
\(\Rightarrow S=S'-S''-S'''=S'-3.\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}-2.\dfrac{n\left(n+1\right)}{2}=\left[\dfrac{n\left(n+1\right)}{2}\right]^2\)
\(=lim\dfrac{n^2\left(n+1\right)^2}{4\left(n^3+1\right)}=\lim\limits\dfrac{\dfrac{n^4}{n^3}}{\dfrac{4n^3}{n^3}}=\lim\limits\dfrac{n}{4}=+\infty\)
Ủa, sao ra dương vô cùng vậy ta, check lại rồi mà nhỉ, bạn xem lại đề bài coi.
Cái này là hoc247 làm sai đấy nhé, thay n=1 vô biểu thức tổng uát, 1(1+1)^2 /2 =2 nhưng 1^3 lại bằng 1 :v
Lời giải:
Bằng pp quy nạp toán học ta có đẳng thức quen thuộc:
$1^3+2^3+...+n^3=\frac{n^2(n+1)^2}{4}$
Do đó:
\(\lim\limits\frac{1^3+2^3+...+n^3}{n^3+1}=\lim\limits\frac{n^2(n+1)^2}{4(n+1)(n^2-n+1)}=\lim\limits\frac{n^2(n+1)}{4(n^2-n+1)}=\lim\limits\frac{n+1}{4-\frac{4}{n}+\frac{4}{n^2}}=+\infty \)
Do đó không xác định được $a,b$
giá trị của giới hạn lim \(\dfrac{\dfrac{1}{2}+1+\dfrac{3}{2}+...+\dfrac{n}{2}}{n^2+1}\)
\(\dfrac{1}{2}+\dfrac{2}{2}+...+\dfrac{n}{2}=\dfrac{1+2+...+n}{2}=\dfrac{n\left(n+1\right)}{4}\)
\(\Rightarrow\lim\dfrac{\dfrac{1}{2}+1+\dfrac{3}{2}+...+\dfrac{n}{2}}{n^2+1}=\lim\dfrac{n\left(n+1\right)}{4\left(n^2+1\right)}=\dfrac{1}{4}\)
Học lim là học csc,csn chưa ấy nhỉ :v Tui học lung tung nên chả biết lần đằng nào, thôi thì cứ nhớ cái này, cần CM tui CM luôn cho
Với csc: \(u_1+u_2+...+u_n=\dfrac{2\left(u_1+u_n\right)}{n}\)
csn: \(u_1+u_2+...+u_n=\dfrac{u_1.\left(1-q^n\right)}{1-q}\)
Ta thấy dãy số trên tử là một csc với công sai là d=1/2
\(\Rightarrow\dfrac{1}{2}+1+...+\dfrac{n}{2}=\dfrac{2\left(\dfrac{n}{2}+\dfrac{1}{2}\right)}{n}=\dfrac{n+1}{n}\)
\(lim\dfrac{n+1}{n\left(n^2+1\right)}=lim\dfrac{n+1}{n^3+n}=\dfrac{0}{1}=0\)
P/s: Tính giới hạn thì nếu tử và mẫu có bậc lớn nhất khác nhau thì chia cả tử và mẫu cho lũy thừa cao nhất ở mẫu
À anh Lâm làm đúng rồi đấy, tui nhớ nhầm cái tổng -.- Đang nằm ngủ bỗng chốc nhớ ra nên bật dậy luôn :v
Csc: \(S_n=\dfrac{n\left(u_1+u_n\right)}{2}\)
Csn: \(S_n=u_1.\dfrac{q^n-1}{q-1}\)
Thay vô đúng bằng 1/4 đấy nhé
giá trị của D = lim (căn bậc hai của n^2 +1) - (căn bậc ba của 3n^3 + 2)/(căn bậc bốn của 2n^4 + n + 2) - n =
giá trị của M = lim [(căn bậc ba 1 - n^2 - 8n^3) + 2n] =
\(M=\lim\limits\left(\sqrt[3]{1-n^2-8n^3}+2n\right)\)
\(=\lim\limits\dfrac{1-n^2-8n^3+8n^3}{\left(\sqrt[3]{1-n^2-8n^3}\right)^2-2n.\sqrt[3]{1-n^2-8n^3}+4n^2}\)
\(=\lim\limits\dfrac{1-n^2}{\left(1-n^2-8n^3\right)^{\dfrac{2}{3}}-2n.\left(1-n^2-8n^3\right)^{\dfrac{1}{3}}+4n^2}\)
\(=\lim\limits\dfrac{-\dfrac{n^2}{n^2}}{\dfrac{\left(-8n^3\right)^{\dfrac{2}{3}}}{n^2}-\dfrac{2n.\left(-8n^3\right)^{\dfrac{1}{3}}}{n^2}+\dfrac{4n^2}{n^2}}=\dfrac{-1}{4+4+4}=-\dfrac{1}{12}\)
1. hàm số y = 3cosx luôn nhận giá trị trong tập nào
2. tập xác định của hàm số y = cosx
3. tính giới hạn \(L=\lim\limits\dfrac{n^2-3n^3}{2n^3+5n-2}\)
4. tính giới hạn \(L=\lim\limits\left(3n^2+5n-3\right)\)
5. kết quả của giới hạn \(\lim\limits_{n\rightarrow+\infty}\left(n^3-2n^2+3n-4\right)\)
1: \(-1< =cosx< =1\)
=>\(-3< =3\cdot cosx< =3\)
=>\(y\in\left[-3;3\right]\)
2:
TXĐ là D=R
3: \(L=\lim\limits\dfrac{-3n^3+n^2}{2n^3+5n-2}\)
\(=\lim\limits\dfrac{-3+\dfrac{1}{n}}{2+\dfrac{5}{n^2}-\dfrac{2}{n^3}}=-\dfrac{3}{2}\)
4:
\(L=lim\left(3n^2+5n-3\right)\)
\(=\lim\limits\left[n^2\left(3+\dfrac{5}{n}-\dfrac{3}{n^2}\right)\right]\)
\(=+\infty\) vì \(\left\{{}\begin{matrix}lim\left(n^2\right)=+\infty\\\lim\limits\left(3+\dfrac{5}{n}-\dfrac{3}{n^2}\right)=3>0\end{matrix}\right.\)
5:
\(\lim\limits_{n\rightarrow+\infty}n^3-2n^2+3n-4\)
\(=\lim\limits_{n\rightarrow+\infty}n^3\left(1-\dfrac{2}{n}+\dfrac{3}{n^2}-\dfrac{4}{n^3}\right)\)
\(=+\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{n\rightarrow+\infty}n^3=+\infty\\\lim\limits_{n\rightarrow+\infty}1-\dfrac{2}{n}+\dfrac{3}{n^2}-\dfrac{4}{n^3}=1>0\end{matrix}\right.\)
\(1,y=3cosx\)
\(+TXD\) \(D=R\)
Có \(-1\le cosx\le1\)
\(\Leftrightarrow-3\le3cosx\le3\)
Vậy có tập giá trị \(T=\left[-3;3\right]\)
\(2,y=cosx\)
\(TXD\) \(D=R\)
\(3,L=lim\dfrac{n^2-3n^3}{2n^3+5n-2}=lim\dfrac{\dfrac{1}{n}-3}{2+\dfrac{5}{n^2}-\dfrac{2}{n^3}}\)(chia cả tử và mẫu cho \(n^3\))
\(=\dfrac{lim\dfrac{1}{n}-lim3}{lim2+5lim\dfrac{1}{n^2}-2lim\dfrac{1}{n^3}}=\dfrac{0-3}{2+5.0-2.0}=-\dfrac{3}{2}\)
\(4,L=lim\left(3n^2+5n-3\right)\\ =lim\left(3+\dfrac{5}{n}-\dfrac{3}{n^2}\right)\\ =lim3+5lim\dfrac{1}{n}-3lim\dfrac{1}{n^2}\\ =3\)
\(5,\lim\limits_{n\rightarrow+\infty}\left(n^3-2n^2+3n-4\right)\\ =lim\left(1-\dfrac{2}{n}+\dfrac{3}{n^2}-\dfrac{4}{n^3}\right)\\ =lim1-0\\ =1\)
giá trị của F = lim (căn bậc bốn của n^4 - 2n + 1) + 2n/(căn bậc ba của 3n^3 + n) - n =
\(F=\lim\limits\dfrac{\sqrt[4]{n^4-2n+1}+2n}{\sqrt[3]{3n^3+n}-n}=\lim\limits\dfrac{\sqrt[4]{\dfrac{n^4}{n^4}-\dfrac{2n}{n^4}+\dfrac{1}{n^4}}+\dfrac{2n}{n}}{\sqrt[3]{\dfrac{3n^3}{n^3}+\dfrac{n}{n^3}}-\dfrac{n}{n}}=\dfrac{1+2}{3-1}=\dfrac{3}{2}\)
tìm các giá trị của a để \(lim\left(\left[\sqrt{a-1}-3\right]n^2+5n-3\right)=-\infty\)
\(\lim n^2\left[\left(\sqrt{a-1}-3\right)+\dfrac{5}{n}-\dfrac{3}{n^2}\right]=+\infty.\left(\sqrt{a-1}-3\right)\)
Để giới hạn đã cho bằng \(-\infty\Rightarrow\sqrt{a-1}-3< 0\Leftrightarrow1\le a< 10\)