Những câu hỏi liên quan
ND
Xem chi tiết
ND
Xem chi tiết
NT
31 tháng 1 2022 lúc 17:01

Gọi \(I\) là tâm nằm trên đường trung trực \(OA\)

 \(\Rightarrow IA=d\left(I,d\right)\Leftrightarrow\sqrt{\left(x_0+1\right)^2+x^2_0}=\dfrac{\left|-x_0+x_0+1-1\right|}{\sqrt{2}}\Leftrightarrow\left[{}\begin{matrix}x_0=0\\x_0=-1\end{matrix}\right.\)

Khi đó: \(\left\{{}\begin{matrix}x_0=0\Rightarrow r=1\\x_0=-1\Rightarrow r=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x^2+\left(y-1\right)^2=1\\\left(x+1\right)^2+y^2=1\end{matrix}\right.\)

 

Bình luận (0)
NN
Xem chi tiết
NL
11 tháng 7 2021 lúc 14:42

Đường tròn (C) tâm \(O\left(2;3\right)\) bán kính \(R=10\)

Gọi I là trung điểm AB \(\Rightarrow IO\perp AB\) 

\(\Rightarrow IO=d\left(O;AB\right)=\dfrac{\left|3.2-4.3+1\right|}{\sqrt{3^2+4^2}}=1\)

Áp dụng định lý Pitago:

\(IA=\sqrt{OA^2-OA^2}=\sqrt{100-1}=3\sqrt{11}\)

\(\Rightarrow AB=2IA=6\sqrt{11}\)

Bình luận (0)
TT
Xem chi tiết
PB
Xem chi tiết
CT
21 tháng 8 2017 lúc 17:44

Bình luận (0)
PB
Xem chi tiết
CT
21 tháng 3 2018 lúc 8:55

Chọn D

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
HP
31 tháng 5 2021 lúc 15:40

1.

\(\left(C\right):x^2+y^2-2x-4=0\)

\(\Leftrightarrow\left(x-1\right)^2+y^2=5\)

Đường tròn \(\left(C\right)\) có tâm \(I=\left(1;0\right)\), bán kính \(R=\sqrt{5}\)

Phương trình đường thẳng \(d_1\) có dạng: \(x+y+m=0\left(m\in R\right)\)

Mà \(d_1\) tiếp xúc với \(\left(C\right)\Rightarrow d\left(I;d_1\right)=\dfrac{\left|1+m\right|}{\sqrt{2}}=\sqrt{5}\)

\(\Leftrightarrow\left|m+1\right|=\sqrt{10}\)

\(\Leftrightarrow m=-1\pm\sqrt{10}\)

\(\Rightarrow\left[{}\begin{matrix}d_1:x+y-1+\sqrt{10}=0\\d_1:x+y-1-\sqrt{10}=0\end{matrix}\right.\)

Bình luận (0)
HP
31 tháng 5 2021 lúc 15:43

2.

Phương trình đường thẳng \(\Delta\) có dạng: \(x-y+m=0\left(m\in R\right)\)

Ta có: \(d\left(I;\Delta\right)=\sqrt{R^2-\dfrac{MN^2}{4}}=2\)

\(\Leftrightarrow\dfrac{\left|m+1\right|}{\sqrt{2}}=2\)

\(\Leftrightarrow m=-1\pm2\sqrt{2}\)

\(\Rightarrow\left[{}\begin{matrix}\Delta:x-y+1+2\sqrt{2}=0\\\Delta:x-y+1-2\sqrt{2}=0\end{matrix}\right.\)

Bình luận (0)
HP
31 tháng 5 2021 lúc 21:42

3.

Vì \(P\in d\Rightarrow P=\left(m;m+1\right)\left(m\in R\right)\)

\(\Rightarrow IP=\sqrt{\left(m-1\right)^2+\left(m+1\right)^2}=\sqrt{2m^2+2}\)

Ta có: \(cosAIP=cos60^o=\dfrac{R}{IP}=\dfrac{\sqrt{5}}{IP}=\dfrac{1}{2}\Rightarrow IP=2\sqrt{5}\)

\(\Rightarrow\sqrt{2m^2+2}=2\sqrt{5}\)

\(\Leftrightarrow2m^2+2=20\)

\(\Leftrightarrow m=\pm3\)

\(\Rightarrow\left[{}\begin{matrix}P=\left(3;4\right)\\P=\left(-3;-2\right)\end{matrix}\right.\)

Bình luận (0)
LN
Xem chi tiết