Những câu hỏi liên quan
LT
Xem chi tiết
NL
29 tháng 9 2020 lúc 15:15

\(sina+sinb+sinc+3=0\)

\(\Leftrightarrow\left(sina+1\right)+\left(sinb+1\right)+\left(sinc+1\right)=0\)

Do \(\left\{{}\begin{matrix}sina\ge-1\\sinb\ge-1\\sinc\ge-1\end{matrix}\right.\) ;\(\forall a;b;c\)

\(\Rightarrow\left(sina+1\right)+\left(sinb+1\right)+\left(sinc+1\right)\ge0\)

Dấu "=" xảy ra khi và chỉ khi \(sina=sinb=sinc=-1\)

\(\Rightarrow cosa=cosb=cosc=0\Rightarrow cosa+cosb+cosc+10=10\)

b/ \(sinx=1-sin^2x\Rightarrow sinx=cos^2x\)

\(\Rightarrow sin^2x=cos^4x\Rightarrow1-cos^2x=cos^4x\)

\(\Rightarrow cos^4x+cos^2x=1\Rightarrow\left(cos^4x+cos^2x\right)^2=1\)

\(\Rightarrow cos^8x+2cos^6x+cos^4x=1\)

Bình luận (0)
 Khách vãng lai đã xóa
TV
Xem chi tiết
DN
Xem chi tiết
NL
28 tháng 6 2021 lúc 21:35

1. 

ĐKXĐ: \(x\ne k\pi\)

\(\Leftrightarrow\left(2cos2x-1\right)\left(sinx-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=\dfrac{1}{2}\\sinx=3>1\left(ktm\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{\pi}{3}+k2\pi\\2x=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k\pi\\x=-\dfrac{\pi}{6}+k\pi\end{matrix}\right.\)

Bình luận (0)
NL
28 tháng 6 2021 lúc 21:43

2. Bạn kiểm tra lại đề, pt này về cơ bản ko giải được.

3.

ĐKXĐ: \(x\ne\dfrac{k\pi}{2}\)

\(\dfrac{3\left(sinx+\dfrac{sinx}{cosx}\right)}{\dfrac{sinx}{cosx}-sinx}-2cosx=2\)

\(\Leftrightarrow\dfrac{3\left(1+cosx\right)}{1-cosx}+2\left(1+cosx\right)=0\)

\(\Leftrightarrow\left(1+cosx\right)\left(\dfrac{3}{1-cosx}+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=-1\left(loại\right)\\cosx=\dfrac{5}{2}\left(loại\right)\end{matrix}\right.\)

Vậy pt đã cho vô nghiệm

Bình luận (1)
NL
28 tháng 6 2021 lúc 21:45

4.

\(\Leftrightarrow\left(sin^2x+cos^2x+2sinx.cosx\right)+\left(sinx+cosx\right)+\left(cos^2x-sin^2x\right)=0\)

\(\Leftrightarrow\left(sinx+cosx\right)^2+\left(sinx+cosx\right)+\left(sinx+cosx\right)\left(cosx-sinx\right)=0\)

\(\Leftrightarrow\left(sinx+cosx\right)\left(sinx+cosx+1+cosx-sinx\right)=0\)

\(\Leftrightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)\left(2cosx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\dfrac{\pi}{4}\right)=0\\cosx=-\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+k\pi\\x=\dfrac{2\pi}{3}+k2\pi\\x=-\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\)

Bình luận (0)
PT
Xem chi tiết
NC
26 tháng 8 2021 lúc 23:09

1, \(sin\left(x+\dfrac{\pi}{6}\right)+cos\left(x+\dfrac{\pi}{6}\right)=\dfrac{\sqrt{6}}{2}\)

⇔  \(\dfrac{\sqrt{2}}{2}sin\left(x+\dfrac{\pi}{6}\right)+\dfrac{\sqrt{2}}{2}cos\left(x+\dfrac{\pi}{6}\right)=\dfrac{\sqrt{3}}{2}\)

⇔ \(sin\left(x+\dfrac{\pi}{6}+\dfrac{\pi}{4}\right)=sin\dfrac{\pi}{4}\)

2, \(\left(\sqrt{3}-1\right)sinx+\left(\sqrt{3}+1\right)cosx=1-\sqrt{3}\)

⇔ \(\dfrac{\left(\sqrt{3}-1\right)}{2\sqrt{2}}sinx+\dfrac{\left(\sqrt{3}+1\right)}{2\sqrt{2}}cosx=\dfrac{1-\sqrt{3}}{2\sqrt{2}}\)

⇔ sinx . si

Bình luận (1)
DN
Xem chi tiết
NL
10 tháng 7 2021 lúc 22:26

1.

Kiểm tra lại đề bài, câu này phải là \(\dfrac{sinx+2cosx+3}{2sinx+cosx+3}\) mới đúng

2.a

ĐKXĐ: \(cosx\ne0\)

\(\Leftrightarrow\dfrac{1}{cos^2x}=4tanx+6\)

\(\Leftrightarrow1+tan^2x=4tanx+6\)

\(\Leftrightarrow tan^2x-4tanx-5=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tanx=5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+k\pi\\x=arctan\left(5\right)+k\pi\end{matrix}\right.\)

Bình luận (0)
NL
10 tháng 7 2021 lúc 22:29

2b.

Đặt \(x-\dfrac{\pi}{4}=t\Rightarrow x=t+\dfrac{\pi}{4}\)

\(sin^3t=\sqrt{2}sin\left(t+\dfrac{\pi}{4}\right)\)

\(\Leftrightarrow sin^3t=sint+cost\)

\(\Leftrightarrow sint\left(1-cos^2t\right)=sint+cost\)

\(\Leftrightarrow sint.cos^2t+cost=0\)

\(\Leftrightarrow cost\left(sint.cost+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cost=0\\sin2t=-\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}cos\left(x-\dfrac{\pi}{4}\right)=0\\sin\left(2x-\dfrac{\pi}{2}\right)=-\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}cos\left(x-\dfrac{\pi}{4}\right)=0\\cos2x=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow...\)

Bình luận (0)
NL
10 tháng 7 2021 lúc 22:33

2c.

ĐKXĐ: \(sin4x\ne0\Leftrightarrow x\ne\dfrac{k\pi}{4}\)

\(\dfrac{4sinx.cos2x}{sin4x}+\dfrac{2cos2x}{sin4x}=\dfrac{2}{sin4x}\)

\(\Leftrightarrow2sinx.cos2x+cos2x=1\)

\(\Leftrightarrow2sinx.cos2x+1-2sin^2x=1\)

\(\Leftrightarrow sinx\left(cos2x-sinx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\left(loại\right)\\cos2x-sinx=0\end{matrix}\right.\)

\(\Leftrightarrow1-2sin^2x-sinx=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=-1\left(loại\right)\\sinx=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow x=\dfrac{\pi}{6}+k2\pi\)

Bình luận (0)
LP
Xem chi tiết
NL
26 tháng 2 2023 lúc 17:36

a.

\(\sqrt{2}sin\left(2x+\dfrac{\pi}{4}\right)=3sinx+cosx+2\)

\(\Leftrightarrow sin2x+cos2x=3sinx+cosx+2\)

\(\Leftrightarrow2sinx.cosx-3sinx+2cos^2x-cosx-3=0\)

\(\Leftrightarrow sinx\left(2cosx-3\right)+\left(cosx+1\right)\left(2cosx-3\right)=0\)

\(\Leftrightarrow\left(2cosx-3\right)\left(sinx+cosx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=\dfrac{3}{2}\left(vn\right)\\sinx+cosx+1=0\end{matrix}\right.\)

\(\Rightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=-1\)

\(\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)=-\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow...\)

Bình luận (0)
NL
26 tháng 2 2023 lúc 17:40

b.

ĐKXĐ: \(cosx\ne\dfrac{1}{2}\Rightarrow\left[{}\begin{matrix}x\ne\dfrac{\pi}{3}+k2\pi\\x\ne-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\dfrac{\left(2-\sqrt{3}\right)cosx-2sin^2\left(\dfrac{x}{2}-\dfrac{\pi}{4}\right)}{2cosx-1}=1\)

\(\Rightarrow\left(2-\sqrt{3}\right)cosx+cos\left(x-\dfrac{\pi}{2}\right)=2cosx\)

\(\Leftrightarrow-\sqrt{3}cosx+sinx=0\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=0\)

\(\Rightarrow x-\dfrac{\pi}{3}=k\pi\)

\(\Rightarrow x=\dfrac{\pi}{3}+k\pi\)

Kết hợp ĐKXĐ \(\Rightarrow x=\dfrac{4\pi}{3}+k2\pi\)

Bình luận (0)
NL
26 tháng 2 2023 lúc 17:42

c.

\(2\sqrt{2}cos\left(\dfrac{5\pi}{12}-x\right)sinx=1\)

\(\Leftrightarrow\sqrt{2}\left(sin\left(\dfrac{5\pi}{12}\right)+sin\left(2x-\dfrac{5\pi}{12}\right)\right)=1\)

\(\Leftrightarrow sin\left(2x-\dfrac{5\pi}{12}\right)=\dfrac{-\sqrt{6}+\sqrt{2}}{2}\)

\(\Leftrightarrow sin\left(2x-\dfrac{5\pi}{12}\right)=sin\left(-\dfrac{\pi}{12}\right)\)

\(\Leftrightarrow...\)

Bình luận (0)
KR
Xem chi tiết
H24
3 tháng 5 2021 lúc 21:37

b) \(\sin x+\cos x=\dfrac{3}{2}\)

\(\left(\sin x+\cos x\right)^2=\dfrac{1}{4}\)

\(\sin^2x+\cos^2x+2\sin x\cos x=\dfrac{1}{4}\)

\(2\sin x\cos x=-\dfrac{3}{4}=\sin2x\)

Bình luận (0)
LL
3 tháng 5 2021 lúc 21:48

ý a,

undefined

Bình luận (0)
LL
3 tháng 5 2021 lúc 21:49

ý c

undefined

Bình luận (0)
AH
Xem chi tiết
AH
29 tháng 3 2019 lúc 19:30

Lời giải:

a)

\(\frac{1-\cos x}{\sin x}=\frac{(1-\cos x)(1+\cos x)}{\sin x(1+\cos x)}=\frac{1-\cos ^2x}{\sin x(1+\cos x)}=\frac{\sin ^2x}{\sin x(1+\cos x)}=\frac{\sin x}{1+\cos x}\)

b)

\((\sin x+\cos x-1)(\sin x+\cos x+1)=(\sin x+\cos x)^2-1^2\)

\(=\sin ^2x+\cos ^2x+2\sin x\cos x-1=1+2\sin x\cos x-1=2\sin x\cos x\)

c)

\(\frac{\sin ^2x+2\cos x-1}{2+\cos x-\cos ^2x}=\frac{1-\cos ^2x+2\cos x-1}{2+\cos x-\cos ^2x}=\frac{-\cos ^2x+2\cos x}{2+\cos x-\cos ^2x}\)

\(=\frac{\cos x(2-\cos x)}{(2-\cos x)(\cos x+1)}=\frac{\cos x}{\cos x+1}\)

d)

\(\frac{\cos ^2x-\sin ^2x}{\cot ^2x-\tan ^2x}=\frac{\cos ^2x-\sin ^2x}{\frac{\cos ^2x}{\sin ^2x}-\frac{\sin ^2x}{\cos ^2x}}=\frac{\sin ^2x\cos ^2x(\cos ^2x-\sin ^2x)}{\cos ^4x-\sin ^4x}\)

\(=\frac{\sin ^2x\cos ^2x(\cos ^2x-\sin ^2x)}{(\cos ^2x-\sin ^2x)(\cos ^2x+\sin ^2x)}=\frac{\sin ^2x\cos ^2x}{\sin ^2x+\cos ^2x}=\sin ^2x\cos ^2x\)

e)

\(1-\cot ^4x=1-\frac{\cos ^4x}{\sin ^4x}=\frac{\sin ^4x-\cos ^4x}{\sin ^4x}=\frac{(\sin ^2x-\cos ^2x)(\sin ^2x+\cos ^2x)}{\sin ^4x}\)

\(=\frac{\sin ^2x-\cos ^2x}{\sin ^4x}=\frac{\sin ^2x-(1-\sin ^2x)}{\sin ^4x}=\frac{2\sin ^2x-1}{\sin ^4x}=\frac{2}{\sin ^2x}-\frac{1}{\sin ^4x}\)

Ta có ddpcm.

Bình luận (0)
AH
Xem chi tiết
NL
27 tháng 3 2019 lúc 16:49

Giả sử các biểu thức đều xác định

a/

\(sinx.cotx+cosx.tanx=sinx.\frac{cosx}{sinx}+cosx.\frac{sinx}{cosx}=sinx+cosx\)

b/

\(\left(1+cosx\right)\left(sin^2x+cos^2x-cosx\right)=\left(1+cosx\right)\left(1-cosx\right)=1-cos^2x=sin^2x\)

c/

\(\frac{sinx+cosx}{cos^3x}=\frac{1}{cos^2x}\left(\frac{sinx+cosx}{cosx}\right)=\left(1+tan^2x\right)\left(tanx+1\right)=tan^3x+tan^2x+tanx+1\)

d/

\(tan^2x-sin^2x=\frac{sin^2x}{cos^2x}-sin^2x=sin^2x\left(\frac{1}{cos^2x}-1\right)\)

\(=sin^2x\left(\frac{1-cos^2x}{cos^2x}\right)=sin^2x.\frac{sin^2x}{cos^2x}=sin^2x.tan^2x\)

e/ \(cot^2x-cos^2x=\frac{cos^2x}{sin^2x}-cos^2x=cos^2x\left(\frac{1}{sin^2x}-1\right)=cos^2x\left(\frac{1-sin^2x}{sin^2x}\right)\)

\(=cos^2x.\frac{cos^2x}{sin^2x}=cos^2x.cot^2x\)

Bình luận (0)
SK
Xem chi tiết
BV
18 tháng 5 2017 lúc 11:22

a) \(\left(sinx+cosx\right)^2=sin^2x+2sinxcosx+cos^2x\)\(=1+2sinxcosx\).
b) \(\left(sinx-cosx\right)^2=sin^2x-2sinxcosx+cos^2x\)\(=1-2sinxcosx\).
c) \(sin^4x+cos^4x=\left(sin^2x+cos^2x\right)^2-2sin^2xcos^2x\)
\(=1-2sin^2xcos^2x\).

Bình luận (0)