Phân tích đa thức thành nhân tử:
a) 3 x 2 - 3 x y – 5 x + 5 y
b) x 2 + 4 x – 45
1A. Phân tích các đa thức sau thành nhân tử:
a) x3+2x; b) 3x - 6y;
c) 5(x + 3y)- 15x(x + 3y); d) 3(x-y)- 5x(y-x).
1B. Phân tích các đa thức sau thành nhân tử:
a) 4x2 - 6x; b) x3y - 2x2y2 + 5xy;
c) 2x2(x +1) + 4x(x +1); d) 2 x(y - 1) - 2
y(1 - y).
5 5
2A. Phân tích các đa thức sau thành nhân tử: a) 2(x -1)3 - 5(x -1)2 - (x - 1);
b) x(y - x)3 - y(x - y)2 + xy(x - y);
c) xy(x + y)- 2x - 2y;
d) x(x + y)2 - y(x + y)2 + y2 (x - y).
2B. Phân tích đa thức thành nhân tử: a) 4(2-x)2 + xy - 2y;
b) x(x- y)3 - y(y - x)2 - y2(x - y);
c) x2y-xy2 - 3x + 3y;
d) x(x + y)2 - y(x + y) 2 + xy - x 2 .
1A:
a: \(x^3+2x=x\left(x^2+2\right)\)
b: \(3x-6y=3\left(x-2y\right)\)
c: \(5\left(x+3y\right)-15x\left(x+3y\right)\)
\(=5\left(x+3y\right)\left(1-3x\right)\)
d: \(3\left(x-y\right)-5x\left(y-x\right)\)
\(=3\left(x-y\right)+5x\left(x-y\right)\)
\(=\left(x-y\right)\left(5x+3\right)\)
1A. a. x(x2+2)
b. 3(x-2y)
c. 5(x+3y)(1-3x)
d. (x-y) (3-5x)
1B. a. 2x(2x-3)
b.xy(x2-2xy+5)
c. 2x(x+1)(x+2)
d. 2x(y-1)+2y(y-1)=2(y-1)(x-y)
1B:
a: \(4x^2-6x=2x\left(2x-3\right)\)
b: \(x^3y-2x^2y^2+5xy\)
\(=xy\left(x^2-2xy+5\right)\)
Phân tích các đa thức sau thành nhân tử:
a) \(P = 6x - 2{x^3}\)
b) \(Q = 5{x^3} - 15{x^2}y\)
c) \(R = 3{x^3}{y^3} - 6x{y^3}z + xy\)
`a, P = 2x(3 - x^2)`
`b, Q = 5x^2(x-3y)`
`c, R = xy(3x^2y^2 - 6y^2z + 1)`
a) \(P=6x-2x^3\)
\(P=2x\left(3+x^2\right)\)
b) \(Q=5x^3-15x^2y\)
\(Q=5x^2\left(x-3y\right)\)
c) \(R=3x^3y^3-6xy^3z+xy\)
\(R=xy\left(3x^2y^2-6y^2z+1\right)\)
a,P=2x(3−x2)𝑎,𝑃=2𝑥(3-𝑥2)
b,Q=5x2(x−3y)𝑏,𝑄=5𝑥2(𝑥-3𝑦)
c,R=xy(3x2y2−6y2z+1)
Phân tích đa thức thành nhân tử:
a, \(x^3+3x^2+3x+1-27z^3\)
b, \(x^2-2xy+y^2-xz+yz\)
c, \(x^4+4x^2-5\)
a.
\(=\left(x+1\right)^3-\left(3z\right)^3\)
\(=\left(x+1+3z\right)\left[\left(x+1\right)^2+3z\left(x+1\right)+9z^2\right]\)
\(=\left(x+3z+1\right)\left(x^2+2x+1+3zx+3z+9z^2\right)\)
b.
\(=\left(x-y\right)^2-z\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y-z\right)\)
c.
\(=x^4-1+4x^2-4\)
\(=\left(x^2-1\right)\left(x^2+1\right)+4\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2+5\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+5\right)\)
a) Ta có: \(x^3+3x^2+3x+1-27z^3\)
\(=\left(x+1\right)^3-\left(3z\right)^3\)
\(=\left(x+1-3z\right)\left(x^2+2x+1+3xz+3z+9z^2\right)\)
b) Ta có: \(x^2-2xy+y^2-zx+yz\)
\(=\left(x-y\right)^2-z\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y-z\right)\)
c) Ta có: \(x^4+4x^2-5\)
\(=x^4+4x^2+4-9\)
\(=\left(x^2+2\right)^2-3^2\)
\(=\left(x^2-1\right)\left(x^2+5\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+5\right)\)
Bài 1:Phân tích đa thức thành nhân tử:
a,x^4+3x^3-6x^2-8x
b,x^3-y^3+z^3-3xyz
c,(x+1).(x+3).(x+5).(x+7)-5
`b)x^3+y^3+z^3-3xyz`
`=x^3+3xy(x+y)+z^3-3xy(x+y)-3xyz`
`=(x+y)^3+z^3-3xy(x+y+z)`
`=(x+y+z)[(x+y)^2-z(x+y)+z^2]-3xy(x+y)`
`=(x+y+z)(x^2+2xy+y^2-zx-yz-3xy+z^2)`
`=(x+y+z)(x^2+y^2+z^2-xy-yz-zx)`
Bạn xem lại đề câu b) nhé đề đúng là `x^3+y^3+z^3-3xyz`.Còn được thì xem lại câu c) nhé do số quá xấu.
`a)x^4+3x^3-6x^2-8`
`=x(x^3+3x^2-6x-8)`
`=x[(x-2)(x^2+2x+4)+3x(x-2)]`
`=x(x-2)(x^2+5x+4)`
`=x(x-2)(x^2+x+4x+4)`
`=x(x-2)(x+1)(x+4)`
`c)(x+1)(x+3)(x+5)(x+7)-5`
`=[(x+1)(x+7)][(x+3)(x+5)]-5`
`=(x^2+8x+7)(x^2+8x+15)-5`
`=(x^2+8x+11)^2-4^2-5`
`=(x^2+8x+11)^2-21`
`=(x^2+8x+11-sqrt21)(x^2+8x+11+sqrt21)`
Phân tích các đa thức sau thành nhân tử:
a) 2(x -1)^ 3 - 5(x -1)^ 2 - (x - 1);
b) x(y - x)^ 3 - y(x - y)^ 2 + xy(x - y);
c) xy(x + y)- 2x - 2y;
d) x(x + y) ^2 - y(x + y)^ 2 + y^ 2 (x - y).
a: Ta có: \(2\left(x-1\right)^3-5\left(x-1\right)^2-\left(x-1\right)\)
\(=\left(x-1\right)\left[2\left(x-1\right)^2-5\left(x-1\right)-1\right]\)
\(=\left(x-1\right)\left(2x^2-4x+2-5x+5-1\right)\)
\(=\left(x-1\right)\left(2x^2-9x+6\right)\)
b: Ta có: \(x\left(y-x\right)^3-y\left(x-y\right)^2+xy\left(x-y\right)\)
\(=-x\left(x-y\right)^3-y\left(x-y\right)^2+xy\left(x-y\right)\)
\(=\left(x-y\right)\left[-x\left(x-y\right)^2-y\left(x-y\right)+xy\right]\)
\(=\left(x-y\right)\left[-x^3+2x^2y-xy^2-xy+y^2+xy\right]\)
\(=\left(x-y\right)\left(-x^3+2x^2y-xy^2+y^2\right)\)
a) \(2\left(x-1\right)^3-5\left(x-1\right)^2-\left(x-1\right)=\left(x-1\right)\left[2\left(x-1\right)^2-5\left(x-1\right)-1\right]=\left(x-1\right)\left(2x^2-4x+2-5x+5-1\right)=\left(x-1\right)\left(2x^2-9x+6\right)\)
b) \(x\left(y-x\right)^3-y\left(x-y\right)^2+xy\left(x-y\right)=\left(x-y\right)\left[-x\left(x-y\right)^2-y\left(x-y\right)+xy\right]=\left(x-y\right)\left(-x^3+2x^2y-xy^2-xy+y^2+xy\right)=\left(x-y\right)\left(-x^3+y^2+2x^2y-xy^2\right)\)
c) \(xy\left(x+y\right)-2x-2y=xy\left(x+y\right)-2\left(x+y\right)=\left(x+y\right)\left(xy-2\right)\)
d) \(x\left(x+y\right)^2-y\left(x+y\right)^2+y^2\left(x-y\right)=\left(x+y\right)^2\left(x-y\right)+y^2\left(x-y\right)=\left(x-y\right)\left(x^2+2xy+y^2+y^2\right)=\left(x-y\right)\left(x^2+2y^2+2xy\right)\)
\(a.2\left(x-1\right)^3-5\left(x-1\right)^2-\left(x-1\right)\\ =\left(x-1\right)\left[2\left(x-1\right)^2-5\left(x-1\right)-1\right]\\ =\left(x-1\right)\left(2x^2-9x+6\right)\)
Câu 1: phân tích đa thức thành nhân tử:
a) x^2 +5-14.
b) xz+yz-5 (x+y).
Câu 2: tìm x
x^2 -4x = -4.
Câu 1:
Phần a đề sai nên mk sửa lại:
a, x2 + 5x - 14 = x2 - 2x + 7x - 14 = x(x - 2) + 7(x - 2) = (x - 2)(x + 7)
b, xz + yz - 5(x + y) = z(x + y) - 5(x + y) = (x + y)(z - 5)
Câu 2:
x2 - 4x = -4
\(\Leftrightarrow\) x2 - 4x + 4 = 0
\(\Leftrightarrow\) (x - 2)2 = 0
\(\Leftrightarrow\) x - 2 = 0
\(\Leftrightarrow\) x = 2
Vậy x = 2
Chúc bn học tốt!
Phân tích các đa thức sau thành nhân tử:
a) \(8{x^3} - 1\)
b) \({x^3} + 27{y^3}\)
c) \({x^3} - {y^6}\)
`a, 8x^3 - 1 = (2x-1)(4x^2 + 2x - 1)`
`b, x^3 + 27y^3 = (x+3y)(x^3 - 3xy + 9y^2)`
`c, x^3 - y^6 = (x-y^2)(x+xy^2 + y^4)`
Bài 2*: Phân tích đa thức thành nhân tử:
a) 3x2-3y2-2(x-y)2
b) x2-y2-2x-2y
c) (x-1)(2x+1)+3(x-1)(x+2)(2x+1)
d) (x-5)2+(x+5)(x-5)-(5-x)(2x+1)
\(a.3x^2-3y^2-2\left(x-y\right)^2\\ =3\left(x^2-y^2\right)-2\left(x-y\right)^2\\ =3\left(x-y\right)\left(x+y\right)-2\left(x-y\right)^2\\ =\left(x-y\right)\left[3\left(x+y\right)-2.\left(x-y\right)\right]=\left(x-y\right)\left(x+5y\right)\\ b.x^2-y^2-2x-2y\\ =\left(x-y\right)\left(x+y\right)-2\left(x+y\right)\\ =\left(x+y\right)\left(x-y-2\right)\\ c.\left(x-1\right)\left(2x+1\right)+3\left(x-1\right)\left(x+2\right)\left(2x+1\right)\\ =\left(x-1\right)\left(2x+1\right)\left[1+3\left(x+2\right)\right]\\ =\left(x-1\right)\left(2x+1\right)\left(3x+7\right)\\ d.\left(x-5\right)^2+\left(x+5\right)\left(x-5\right)-\left(5-x\right)\left(2x+1\right)\\ =\left(x-5\right)^2+\left(x+5\right)\left(x-5\right)+\left(x-5\right)\left(2x+1\right)\\ =\left(x-5\right)\left[\left(x-5\right)+\left(x+5\right)+\left(2x+1\right)\right]\\ =\left(x-5\right)\left(4x+1\right)\)
a) 3x2-3y2-2(x-y)2
\(=3\left(x^2-y^2\right)-2\left(x-y\right)^2\\ =3\left(x+y\right)\left(x-y\right)-2\left(x-y\right)^2\\ =\left(x-y\right)\left(3-2x+2y\right)\)
a: \(3x^2-3y^2-2\left(x-y\right)^2\)
\(=3\left(x-y\right)\left(x+y\right)-2\left(x-y\right)\left(x-y\right)\)
\(=\left(x-y\right)\left(3x+3y-2x+2y\right)\)
\(=\left(x-y\right)\left(x+5y\right)\)
b: Ta có: \(x^2-y^2-2x-2y\)
\(=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-2\right)\)
Phân tích các đa thức sau thành nhân tử:
a) \(4{x^3} - 16x\)
b) \({x^4} - {y^4}\)
c) \(x{y^2} + {x^2}y + \dfrac{1}{4}{y^3}\)
d) \({x^2} + 2x - {y^2} + 1\)
`a, 4x^3 - 16x = 4x(x^2-4) = 4x(x-2)(x+2)`
`b, x^4 - y^4 = (x^2-y^2)(x^2+y^2) = (x-y)(x+y)(x^2+y^2)`
`c, xy^2 + x^2y + 1/4y^3`
`= y(xy + x^2 + 1/4y^2)`
`d, x^2 + 2x - y^2 + 1 = (x+1)^2 - y^2`
`= (x+1+y)(x+1-y)`
Phân tích các đa thức sau thành nhân tử:
a) \(9{x^2} - 16\) b) \(4{x^2} - 12xy + 9{y^2}\) c) \({t^3} - 8\) d) \(2a{x^3}{y^3} + 2a\)
`a, 9x^2 - 16 = (3x+4)(3x-4)`
`b, 4x^2 - 12xy + 9y^2 = (2x-3y)^2`
`c, t^3-8 = (t-2)(t^2 - 2t + 4)`
`d, 2ax^3y^3 + 2a = 2a(x^3y^3 + 1) = 2a(xy+1)(x^2y^2 - xy + 1)`
a) \(\left(9x^2-16\right)=\left(3x-4\right)\left(3x+4\right)\)
b) \(4x^2-12xy+9y^2=\left(2x-3y\right)^2\)
c) \(t^3-8=\left(t-2\right)\left(t^2+2t+4\right)\)
d) \(2ax^3y^3+2a=2a\left(x^3y^3+1\right)\)