Biết ∫ 0 1 x 2 - 2 x 2 + 1 d x = - 1 m + n ln 2 , với m,n là các số nguyên. Tính m+n.
Tìmx,y biết x^2-25=0 b, (x+1)^2=4 c, (x-3)^3-64=0 d, 2^x+1-128=0 e, x^2 +(y-2)^2=0
a: =>(x-5)(x+5)=0
=>x=5 hoặc x=-5
b: \(\Leftrightarrow\left[{}\begin{matrix}x+1=2\\x+1=-2\end{matrix}\right.\Leftrightarrow x\in\left\{1;-3\right\}\)
c: =>x-3=4
hay x=7
d: =>x+1=7
hay x=6
e: =>x=0 và y-2=0
hay x=0 và y=2
1) Tìm x và y biết
a) (2x+1)^2 + y^2 = 0
b) x^2 +2x+1+(y-1)^2 = 0
c) x^2 - 2x+y^2 + 45y + 5 = 0
2) Tìm x biết
a) x(5-2x) - 2x(1-x) = 15
b) (x-3)^2 - 16+0
c) (2x-1)^2 + (x+3)^2- 5(x+7)(x-7) = 0
1) Tìm x và y biết
a) (2x+1)2 + y2 = 0
Ta có : \(\left(2x+1\right)^2\ge0;y^2\ge0\)
\(\Rightarrow\left(2x+1\right)^2+y^2\ge0\)
Để \(\left(2x+1\right)^2+y^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+1\right)^2=0\\y^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+1=0\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=0\end{matrix}\right.\)
b) x2 + 2x + 1 + (y-1)2 = 0
\(\Rightarrow\left(x+1\right)^2+\left(y-1\right)^2=0\)
Lập luận tương tự câu a ,ta có :
\(\left(x+1\right)^2+\left(y-1\right)^2\ge0\)
\(\left(x+1\right)^2+\left(y-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
c) x2 - 2x + y2 + 4y + 5 = 0
\(\Rightarrow\left(x^2-2x+1\right)+\left(y^2+4y+4\right)\)
\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)
Lập luận tương tự 2 câu trên
\(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
. Tìm x, biết:
a) 4x2 – 9 = 0
b) (x + 5)2 – (x – 1)2= 0
c) x2 – 6x – 7 = 0
d) (x + 1)2 – (2x - 1)2 = 0
a)4x2-9=0
⇔ (2x-3)(2x+3)=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
b)(x+5)2-(x-1)2=0
⇔ (x+5-x+1)(x+5+x-1)=0
⇔ 12(x+2)=0
⇔ x=-2
c)x2-6x-7=0
⇔ x2-7x+x-7=0
⇔ x(x-7)+(x-7)=0
⇔ (x-7)(x+1)=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=7\\x=-1\end{matrix}\right.\)
d)(x+1)2-(2x-1)2=0
⇔ (x+1-2x+1)(x+1+2x-1)=0
⇔3x(2-x)=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
a, 4x2 - 9 = 0
<=> 4x2 = 9
<=> x2 = \(\dfrac{9}{4}\) => x = \(\sqrt{\dfrac{9}{4}}\)
b, (x + 5 )2 - ( x - 1 )2 = 0
<=> ( x+5-x+1 )(x+5+x-1) = 0
<=> 6(2x+4) = 0
<=> 12x+24=0
<=> 12x = -24
<=> x = -2
c, x2-6x-7=0
<=> x2+x-7x-7=0
<=> x(x+1)-7(x+1)=0
<=> (x-7)(x+1)=0
=> x+7=0 hoặc x+1=0
+ x-7=0 => x=7
+ x+1=0 => x=-1
d, \(\left(x+1\right)^2-\left(2x-1\right)^2=0\)
<=> \(\left(x+1-2x+1\right)\left(x+1+2x-1\right)=0\)
<=> (-x+2).3x=0
=> x=0 hoặc (-x+2).3=0
+ (-x+2).3=0 => -3x+6=0 => x=-2
b) (x +5)2 -(x -1)2=0
<=> [(x +5) -(x -1)][(x +5) +(x -1)]=0
<=> (x +5 -x +1)(x +5 +x -1)=0
<=> 6(2x+4)=0 <=>12(x +2)=0
=> x +2=0=> x=-2
vậy x= -2
c) x2 -6x -7=0
<=> x2 -7x +x -7=0
<=> (x2 +x)( -7x -7)=0
<=> x(x +1).-7(x +1)=0
<=> (x +1)(x -7)=0
<=> \(\left\{{}\begin{matrix}x+1=0\\x-7=0\end{matrix}\right.< =>\left\{{}\begin{matrix}x=-1\\x=7\end{matrix}\right.\)
Vậy S={-1; 7}
d) (x +1)2 -(2x -1)2=0
<=> [(x -1)-(2x -1)][(x -1)+(2x -1)]=0
<=> (x -1 -2x +1)(x -1 +2x -1)=0
<=> (x -2x)(3x -2)<=> -x(3x -2)=0
<=> \(\left\{{}\begin{matrix}-x=0\\3x-2=0\end{matrix}\right.< =>\left\{{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy S={0; \(\dfrac{2}{3}\)}
BT9: Tìm x biết
\(1,x^2-9=0\)
\(2,25-x^2=0\)
\(3,-x^2+36=0\)
\(4,4x^2-4=0\)
`@` `\text {Ans}`
`\downarrow`
`1,`
`x^2 - 9 = 0`
`<=> x^2 = 0 + 9`
`<=> x^2 = 9`
`<=> x^2 = (+-3)^2`
`<=> x = +-3`
Vậy, `S = {3; -3}`
`2,`
`25 - x^2 = 0`
`<=> x^2 = 25 - 0`
`<=> x^2 = 25`
`<=> x^2 = (+-5)^2`
`<=> x = +-5`
Vậy,` S= {5; -5}`
`3,`
`-x^2 + 36 = 0`
`<=> -x^2 = 0 - 36`
`<=> -x^2 = -36`
`<=> x^2 = 36`
`<=> x^2 = (+-6)^2`
`<=> x = +-6`
Vậy, `S= {6; -6}`
`4,`
`4x^2 - 4 = 0`
`<=> 4x^2 = 0+4`
`<=> 4x^2 = 4`
`<=> x^2 = 4 \div 4`
`<=> x^2 = 1`
`<=> x^2 = (+-1)^2`
`<=> x = +-1`
Vậy, `S= {1; -1}`
`@` `\text {Kaizuu lv uuu}`
Tìm x nguyên biết
+) (x-1).(x^2+1)=0
+) (x+1)^2.(x-2)^2=0
\(\left(x-1\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow x-1=0\)(vì x2 + 1 > 0 )
\(\Leftrightarrow x=1\)
\(\left(x+1\right)^2\left(x-2\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
Tìm x, biết:
a) 2-x = 2 ( x - 2 ) 3 ; b) 8 x 3 - 72x = 0;
c) ( x - 1 , 5 ) 6 + 2 ( 1 , 5 - x ) 2 = 0; d) 2 x 3 +3 x 2 +3 + 2x = 0;
e) x 3 - 4x- 14x(x - 2) = 0; g) x 2 (x + 1)- x(x + 1) + x(x - 1) = 0.
Tìm x, biết:
a) 3x(x - 1) + x - 1 = 0;
b) (x - 2)( x 2 + 2x + 7) + 2( x 2 - 4) - 5(x - 2) = 0;
c) ( 2 x - 1 ) 2 - 25 = 0;
d) x 3 + 27 + (x + 3)(x - 9) = 0.
a) x = 1; x = - 1 3 b) x = 2.
c) x = 3; x = -2. d) x = -3; x = 0; x = 2.
Bài 1: Tìm x biết a) x^3 - 4x^2 - x + 4= 0 b) x^3 - 3x^2 + 3x + 1=0 c) x^3 + 3x^2 - 4x - 12=0 d) (x-2)^2 - 4x +8 =0
a: \(x^3-4x^2-x+4=0\)
=>\(\left(x^3-4x^2\right)-\left(x-4\right)=0\)
=>\(x^2\left(x-4\right)-\left(x-4\right)=0\)
=>\(\left(x-4\right)\left(x^2-1\right)=0\)
=>\(\left[{}\begin{matrix}x-4=0\\x^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x^2=1\end{matrix}\right.\Leftrightarrow x\in\left\{2;1;-1\right\}\)
b: Sửa đề: \(x^3+3x^2+3x+1=0\)
=>\(x^3+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3=0\)
=>\(\left(x+1\right)^3=0\)
=>x+1=0
=>x=-1
c: \(x^3+3x^2-4x-12=0\)
=>\(\left(x^3+3x^2\right)-\left(4x+12\right)=0\)
=>\(x^2\cdot\left(x+3\right)-4\left(x+3\right)=0\)
=>\(\left(x+3\right)\left(x^2-4\right)=0\)
=>\(\left(x+3\right)\left(x-2\right)\left(x+2\right)=0\)
=>\(\left[{}\begin{matrix}x+3=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\\x=-2\end{matrix}\right.\)
d: \(\left(x-2\right)^2-4x+8=0\)
=>\(\left(x-2\right)^2-\left(4x-8\right)=0\)
=>\(\left(x-2\right)^2-4\left(x-2\right)=0\)
=>\(\left(x-2\right)\left(x-2-4\right)=0\)
=>(x-2)(x-6)=0
=>\(\left[{}\begin{matrix}x-2=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)
Tìm x biết : x mũ 2 + ( x - 1 ) mũ 2 = 0 , ( x -1 ) . ( x - 5 ) > 0 , ( x + 1 ) . ( x - 2 ) < 0
\(2+\left(x-1\right)^2=0\)
\(\left(x-1\right)^2=-2\left(loại\right)\)
P/s : làm từng phần một
( x - 1 ) ( x - 5 ) > 0
TH1: cả x - 1 và x - 5 lớn hơn 0
+) x - 1 > 0 => x > 1
+) x - 5 > 0 => x > 5
=> x > 5
TH2 : cả x - 1 và x - 5 đều bé hơn 0
+) x - 1 < 0 => x < 1
+) x - 5 < 0 => x < 5
=> x < 1
Vậy,..........
\(x^2+\left(x-1\right)^2=0\)
mà mũ chẵn lớn hơn hoặc bằng 0 mà theo đề bài
\(\Rightarrow\hept{\begin{cases}x^2=0\\\left(x-1\right)^2=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=0\\x-1=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=0\\x=1\end{cases}}\)
P/s : sorry mắt mk cận =))
Tìm x thuộc Z biết:
a, x (x + 2) = 0
b, (x - 1) (x - 2) = 0
c, (x - 2) (x^2 + 1) = 0
d, (x + 1) (x^2 - 4) = 0
e, x (x - 3) > 0
a) \(x\left(x+2\right)=0\)
=> \(\orbr{\begin{cases}x=0\\x+2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)
Vậy ...
b) (x - 1)(x - 2) = 0
=> \(\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
Vậy ...
còn lại tương tự
a) x(x+2) = 0
=> x=0 hoặc x+2 = 0
+ x + 2 = 0
x = 0 - 2
x = -2
Vậy x thuộc tập hợp 0 ; -2
b) (x-1)(x-2)=0
=> x-1 =0 hoặc x-2=0
+ x-1=0 + x-2=0
x=0+1 x=0+2
x=1 x=2
Vậy x thuộc tập hợp 1;2
ý c , d làm giống 2 ý đầu
e) x(x-3)>0
=> \(\hept{\begin{cases}x>0\\x-3>0\end{cases}}\)=> \(\hept{\begin{cases}x>0\\x>3\end{cases}}=>\hept{\begin{cases}\\\end{cases}}x>3\)
Vậy x > 3