NA

 . Tìm x, biết:  

a) 4x2 – 9 = 0

b) (x + 5)2 – (x – 1)2= 0 

c) x2 – 6x – 7 = 0

d) (x + 1)2 – (2x - 1)2 = 0 

EC
9 tháng 8 2021 lúc 7:21

a)4x2-9=0

⇔ (2x-3)(2x+3)=0

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)

b)(x+5)2-(x-1)2=0

⇔ (x+5-x+1)(x+5+x-1)=0

⇔ 12(x+2)=0

⇔ x=-2

c)x2-6x-7=0

⇔ x2-7x+x-7=0

⇔ x(x-7)+(x-7)=0

⇔ (x-7)(x+1)=0

\(\Leftrightarrow\left\{{}\begin{matrix}x=7\\x=-1\end{matrix}\right.\)

d)(x+1)2-(2x-1)2=0

⇔ (x+1-2x+1)(x+1+2x-1)=0

⇔3x(2-x)=0

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

 

Bình luận (0)
HN
9 tháng 8 2021 lúc 7:35

a, 4x2 - 9 = 0

<=> 4x2 = 9

<=> x2 = \(\dfrac{9}{4}\) => x = \(\sqrt{\dfrac{9}{4}}\)

b, (x + 5 )2 - ( x - 1 )2 = 0

<=> ( x+5-x+1 )(x+5+x-1) = 0

<=> 6(2x+4) = 0

<=> 12x+24=0

<=> 12x = -24

<=> x = -2

c, x2-6x-7=0

<=> x2+x-7x-7=0

<=> x(x+1)-7(x+1)=0

<=> (x-7)(x+1)=0

=> x+7=0 hoặc x+1=0

+ x-7=0 => x=7

+ x+1=0 => x=-1

d, \(\left(x+1\right)^2-\left(2x-1\right)^2=0\)

<=> \(\left(x+1-2x+1\right)\left(x+1+2x-1\right)=0\)

<=> (-x+2).3x=0

=> x=0 hoặc (-x+2).3=0

+ (-x+2).3=0 => -3x+6=0 => x=-2

Bình luận (0)
TH
9 tháng 8 2021 lúc 7:42

b) (x +5)2 -(x -1)2=0

<=> [(x +5) -(x -1)][(x +5) +(x -1)]=0

<=> (x +5 -x +1)(x +5 +x -1)=0

<=> 6(2x+4)=0 <=>12(x +2)=0

=> x +2=0=> x=-2

vậy x= -2

c) x-6x -7=0

<=> x2 -7x +x -7=0

<=> (x2 +x)( -7x -7)=0

<=> x(x +1).-7(x +1)=0

<=> (x +1)(x -7)=0

<=> \(\left\{{}\begin{matrix}x+1=0\\x-7=0\end{matrix}\right.< =>\left\{{}\begin{matrix}x=-1\\x=7\end{matrix}\right.\)

Vậy S={-1; 7}

d) (x +1)2 -(2x -1)2=0

<=> [(x -1)-(2x -1)][(x -1)+(2x -1)]=0

<=> (x -1 -2x +1)(x -1 +2x -1)=0

<=> (x -2x)(3x -2)<=> -x(3x -2)=0

<=> \(\left\{{}\begin{matrix}-x=0\\3x-2=0\end{matrix}\right.< =>\left\{{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)

Vậy S={0; \(\dfrac{2}{3}\)}

 

Bình luận (0)
TH
9 tháng 8 2021 lúc 7:49

a) 4x2 -9=0

<=> (2x2)2 -32=0

<=> (2x2 -3)(2x2 +3)=0

<=>\(\left\{{}\begin{matrix}2x^2-3=0\\2x^2+3=0\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}2x^2=3\\2x^2=-3\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x^2=1,5\\x^2=-1,5\left(L\right)\end{matrix}\right.\)

=> x=1,5

Vậy x=1,5

 

Bình luận (0)

Các câu hỏi tương tự
ND
Xem chi tiết
NA
Xem chi tiết
NV
Xem chi tiết
iu
Xem chi tiết
PB
Xem chi tiết
TL
Xem chi tiết
NQ
Xem chi tiết
LN
Xem chi tiết
TM
Xem chi tiết