Ôn tập phép nhân và phép chia đa thức

BN

1) Tìm x và y biết

a) (2x+1)^2 + y^2 = 0

b) x^2 +2x+1+(y-1)^2 = 0

c) x^2 - 2x+y^2 + 45y + 5 = 0

2) Tìm x biết

a) x(5-2x) - 2x(1-x) = 15

b) (x-3)^2 - 16+0

c) (2x-1)^2 + (x+3)^2- 5(x+7)(x-7) = 0

LG
14 tháng 11 2017 lúc 20:28

1) Tìm x và y biết

a) (2x+1)2 + y2 = 0

Ta có : \(\left(2x+1\right)^2\ge0;y^2\ge0\)

\(\Rightarrow\left(2x+1\right)^2+y^2\ge0\)

Để \(\left(2x+1\right)^2+y^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+1\right)^2=0\\y^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+1=0\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=0\end{matrix}\right.\)

b) x2 + 2x + 1 + (y-1)2 = 0

\(\Rightarrow\left(x+1\right)^2+\left(y-1\right)^2=0\)

Lập luận tương tự câu a ,ta có :

\(\left(x+1\right)^2+\left(y-1\right)^2\ge0\)

\(\left(x+1\right)^2+\left(y-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

c) x2 - 2x + y2 + 4y + 5 = 0

\(\Rightarrow\left(x^2-2x+1\right)+\left(y^2+4y+4\right)\)

\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)

Lập luận tương tự 2 câu trên

\(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
NL
Xem chi tiết
MD
Xem chi tiết
H24
Xem chi tiết
PQ
Xem chi tiết
NT
Xem chi tiết
TD
Xem chi tiết
PT
Xem chi tiết
NM
Xem chi tiết
BT
Xem chi tiết