Những câu hỏi liên quan
H24
Xem chi tiết
H24
Xem chi tiết
MT
Xem chi tiết
TM
Xem chi tiết
TD
Xem chi tiết
HA
Xem chi tiết
AH
25 tháng 5 2021 lúc 1:10

Lời giải:

\(y'=\frac{2}{3}x+m\geq 0, \forall x\in\mathbb{R}\Leftrightarrow m\geq -\frac{2}{3}x, \forall x\in\mathbb{R}\)

\(\Leftrightarrow m\geq \max (\frac{-2}{3}x), \forall x\in\mathbb{R}\)

Vì $\frac{-2}{3}x$ không có max với mọi $x\in\mathbb{R}$ nên không tồn tại $m$

Bình luận (0)
H24
Xem chi tiết
LP
Xem chi tiết
AM
14 tháng 2 2022 lúc 6:47

Để y xác định thì \(\left(m-2\right)x+2m-3\ge0\forall x\in\left[-1;4\right]\)

\(\Leftrightarrow mx-2x+2m-3\ge0\)

\(\Leftrightarrow m\left(x+2\right)-2x-3\ge0\)

\(\Leftrightarrow m\ge\dfrac{2x+3}{x+2}\left(x+2>0\forall x\in\left[-1;4\right]\right)\)

\(\Rightarrow1\le m\le\dfrac{11}{6}\)

Bình luận (0)
PB
Xem chi tiết
CT
6 tháng 9 2017 lúc 8:31

Chọn A

Cách 1

Điều kiện: x > 0

Hàm số xác định khi:

Để hàm số xác định trên  ( 0 ; + ∞ )  thì phương trình 

Xét hàm số 

Đặt   khi đó ta có 

Ta có BBT:

Để hàm số xác định trên 

Cách 2:

 

Đề hàm số xác định trên khoảng  thi phương trình  vô nghiệm.

TH1: m = 0 thì PT trở thành 

 

Vậy m = 0 không thỏa mãn.

 

TH2: m   ≠ 0 thì để PT vô nghiệm 

Để hàm số xác định trên 

Bình luận (0)
NH
Xem chi tiết
NL
8 tháng 7 2021 lúc 15:14

\(y'=-x^2-2\left(m-2\right)x+m-2\)

Hàm nghịch biến trên TXĐ khi và chỉ khi \(y'\le0;\forall x\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=-1< 0\left(đúng\right)\\\Delta'=\left(m-2\right)^2+m-2\le0\end{matrix}\right.\)

\(\Leftrightarrow\left(m-2\right)\left(m-1\right)\le0\)

\(\Leftrightarrow1\le m\le2\)

Bình luận (0)