Cho L = lim x → + ∞ m x + 2006 x + x 2 + 2007 . Tìm m để L=0
A. m ≠ 0
B. m=0
C. m > 0
D. -1< m < 1
Cho hai hàm số \(f\left( x \right) = {x^2} - 1,g\left( x \right) = x + 1.\)
a) Tính \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\) và \(\mathop {\lim }\limits_{x \to 1} g\left( x \right).\)
b) Tính \(\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) + g\left( x \right)} \right]\)và so sánh \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) + \mathop {\lim }\limits_{x \to 1} g\left( x \right).\)
c) Tính \(\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) - g\left( x \right)} \right]\)và so sánh \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) - \mathop {\lim }\limits_{x \to 1} g\left( x \right).\)
d) Tính \(\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right).g\left( x \right)} \right]\)và so sánh \(\mathop {\lim }\limits_{x \to 1} f\left( x \right).\mathop {\lim }\limits_{x \to 1} g\left( x \right).\)
e) Tính \(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right)}}{{g\left( x \right)}}\)và so sánh \(\frac{{\mathop {\lim }\limits_{x \to 1} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to 1} g\left( x \right)}}.\)
a) \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} \left( {{x^2} - 1} \right) = \mathop {\lim }\limits_{x \to 1} {x^2} - \mathop {\lim }\limits_{x \to 1} 1 = {1^2} - 1 = 0\)
\(\mathop {\lim }\limits_{x \to 1} g\left( x \right) = \mathop {\lim }\limits_{x \to 1} \left( {x + 1} \right) = \mathop {\lim }\limits_{x \to 1} x + \mathop {\lim }\limits_{x \to 1} 1 = 1 + 1 = 2\)
b) \(\begin{array}{l}\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) + g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to 1} \left( {{x^2} + x} \right) = {1^2} + 1 = 2\\\mathop {\lim }\limits_{x \to 1} f\left( x \right) + \mathop {\lim }\limits_{x \to 1} g\left( x \right) = 0 + 2 = 2\\ \Rightarrow \mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) + g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to 1} f\left( x \right) + \mathop {\lim }\limits_{x \to 1} g\left( x \right).\end{array}\)
c) \(\begin{array}{l}\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) - g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to 1} \left( {{x^2} - x - 2} \right) = {1^2} - 1 - 2 = - 2\\\mathop {\lim }\limits_{x \to 1} f\left( x \right) - \mathop {\lim }\limits_{x \to 1} g\left( x \right) = 0 - 2 = - 2\\ \Rightarrow \mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) - g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to 1} f\left( x \right) - \mathop {\lim }\limits_{x \to 1} g\left( x \right).\end{array}\)
d) \(\begin{array}{l}\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right).g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to 1} \left[ {\left( {{x^2} - 1} \right)\left( {x + 1} \right)} \right] = \mathop {\lim }\limits_{x \to 1} \left( {{x^3} + {x^2} - x - 1} \right) = {1^3} + {1^2} - 1 - 1 = 0\\\mathop {\lim }\limits_{x \to 1} f\left( x \right).\mathop {\lim }\limits_{x \to 1} g\left( x \right) = 0.2 = 0\\ \Rightarrow \mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right).g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to 1} f\left( x \right).\mathop {\lim }\limits_{x \to 1} g\left( x \right).\end{array}\)
e) \(\begin{array}{l}\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right)}}{{g\left( x \right)}} = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 1}}{{x + 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 1} \right)\left( {x + 1} \right)}}{{x + 1}} = \mathop {\lim }\limits_{x \to 1} \left( {x - 1} \right) = 1 - 1 = 0\\\frac{{\mathop {\lim }\limits_{x \to 1} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to 1} g\left( x \right)}} = \frac{0}{2} = 0\\ \Rightarrow \mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{{\mathop {\lim }\limits_{x \to 1} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to 1} g\left( x \right)}}.\end{array}\)
nếu lim f(x)=L>0, lim g(x)=-vô cùng thì kết quả của giới hạn lim f(x).g(x) là:
A/ - vô cùng
B/ 0
C/ + vô cùng
D/ L
Cho hàm số y=f(x) xác định trên (a;b). Nếu \(\forall\left(x_o\right),x_n\ne x_o,l\text{imx}_n=x_o\Rightarrow l\text{imf}\left(x_n\right)=+\infty\) thì:
A. \(\lim\limits_{x->x_o}f\left(x\right)=L\)
B. \(\lim\limits_{x->x_o^-}f\left(x\right)=-\infty\)
C. \(\lim\limits_{x->x_o}f\left(x\right)=-\infty\)
D. \(\lim\limits_{x->x_o}f\left(x\right)=+\infty\)
\(\lim\limits_{x\rightarrow x_0}f\left(x\right)=+\infty\)
Biết lim x -> +∞ f(x) = M ;lim x -> +∞ g(x) = 0 Chọn khẳng định đúng? A. Lim x -> +∞ f(x)/g(x)= +∞ B. Lim x -> +∞ = f(x)/g(x)= -∞ C. Lim x -> +∞ f(x)/g(x)=0 D. Limx -> +∞ [g(x).f(x)]=0
cho f(x)là một đa thức thỏa mãn limx\(\rightarrow2\)\(\dfrac{f\left(x\right)-20}{x-2}\) =10. tính giới hạn sau
A=limx\(\rightarrow2\)\(\dfrac{\sqrt[4]{6f\left(x\right)+5}-5}{x^2+x-6}\)
ta có (f(x)-20)/(x-2)=10
===>f(x)=10x
thay f(x)=10x vào A và thay
x=2+0,000000001 ta được giới hạn của A= -331259694,9
Cho hai hàm số \(y=f\left(x\right)\) và \(y=g\left(x\right)\) cùng xác định trên khoảng \(\left(-\infty;a\right)\). Dùng định nghĩa chứng minh rằng nếu \(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=L\) và \(\lim\limits_{x\rightarrow-\infty}g\left(x\right)=M\) thì \(\lim\limits_{x\rightarrow-\infty}f\left(x\right).g\left(x\right)=L.M\)
tìm các giới hạn sau:
a, \(\lim\limits_{x\rightarrow1}\frac{x^4-1}{x^3-2x^2+1}\) ( câu a,b chỉ cần thay số vào thôi đúng k ạ nếu là thay số thì k cần trình bày nữa đâu )
b, \(\lim\limits_{x\rightarrow-1}\frac{x^5+1}{x^3+1}\)
c, \(\lim\limits_{x\rightarrow3}\frac{x^3-5x^2+3x+9}{x^4-8x^2-9}\)
d, \(\lim\limits_{x\rightarrow1}\frac{x-5x^5+4x^6}{\left(1-x\right)^2}\)
e, \(\lim\limits_{x\rightarrow1}\frac{x^m-1}{x^n-1}\)
f, \(\lim\limits_{x\rightarrow-2}\frac{x^4-16}{x^3+2x^2}\)
\(a=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)\left(x+1\right)\left(x^2+1\right)}{\left(x-1\right)\left(x^2+x-1\right)}=\lim\limits_{x\rightarrow1}\frac{\left(x+1\right)\left(x^2+1\right)}{x^2+x-1}=\frac{4}{1}=4\)
\(b=\lim\limits_{x\rightarrow-1}\frac{\left(x+1\right)\left(x^4-x^3+x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\lim\limits_{x\rightarrow-1}\frac{x^4-x^3+x^2-x+1}{x^2-x+1}=\frac{5}{3}\)
\(c=\lim\limits_{x\rightarrow3}\frac{\left(x+1\right)\left(x-3\right)^2}{\left(x^2+1\right)\left(x^2-9\right)}=\lim\limits_{x\rightarrow3}\frac{\left(x+1\right)\left(x-3\right)}{\left(x^2+1\right)\left(x+3\right)}=\frac{0}{60}=0\)
\(d=\lim\limits_{x\rightarrow1}\frac{4x^6-5x^5+x}{x^2-2x+1}=\lim\limits_{x\rightarrow1}\frac{24x^5-25x^4+1}{2x-2}=\lim\limits_{x\rightarrow1}\frac{120x^4-100x^3}{2}=10\)
\(e=\lim\limits_{x\rightarrow1}\frac{mx^{m-1}}{nx^{n-1}}=\frac{m}{n}\)
\(f=\lim\limits_{x\rightarrow-2}\frac{\left(x+2\right)\left(x-2\right)\left(x^2+4\right)}{\left(x+2\right)x^2}=\lim\limits_{x\rightarrow-2}\frac{\left(x-2\right)\left(x^2+4\right)}{x^2}=-8\)
Hai câu d, e khai triển thì dài quá nên làm biếng sử dụng L'Hopital
ai tìm ra cách sai trong 2 cái giải này giúp mình với: đề bài là tính \(lim\sqrt{x^4+x^2}-\sqrt[3]{x^6+1}\)
C1:\(lim\sqrt{x^4+x^2}-\sqrt[3]{x^6+1}=lim\left(x^2\left(\sqrt{1+\dfrac{1}{x^2}}\right)-\sqrt[3]{1+\dfrac{1}{x^6}}\right)\)=lim x2(1-1)=0
C2:\(lim\sqrt{x^4+x^2}-\sqrt[3]{x^6+1}=lim\left(\sqrt{x^4+x^2}-x^2-\sqrt[3]{x^6+1}+x^2\right)\\ \)=\(lim\left(\dfrac{x^2}{\sqrt{x^4+x^2}+x^2}-\dfrac{1}{\left(\sqrt[3]{x^6+1}\right)^2+x^2.\sqrt[3]{x^6+1}+x^4}\right)\)
=lim(\(\dfrac{1}{2}-0\))= \(\dfrac{1}{2}\)
mình không biết cách nào đúng ai chỉ cho mình với
Hiển nhiên là cách đầu sai rồi em
Khi đến \(\lim x^2\left(1-1\right)=+\infty.0\) là 1 dạng vô định khác, đâu thể kết luận nó bằng 0 được
Bài 1 tìm các giới hạn sau :
a, lim 2x²-3x-2/x-2
(limx->2)
b, lim x³-3x²+5x-3/x²-1
(limx->1)
c, limx²+2x/x²+4x+4
(limx->2)
d, limx³-x²-x+1/x²-3x+2
(lim x->1)
e, limx³-5x²+3x+9/x4-8x²-9
(lim x->1)
f, lim x4-1/x³-2x²+3
(limx->-1)
g, limx²+2x-3/2x²-x-1
(limx->1)
h,lim x³-3x+2/4-x²
(lim x->-2)
i, lim4x6-5x5+1/x²-1
(lim x->1)
k, lim x mũ m -1/ x mũ n -1
(lim x->1)m, n thuộc N
Bài 1 tìm các giới hạn sau :
a, lim 2x²-3x-2/x-2
(limx->2)
b, lim x³-3x²+5x-3/x²-1
(limx->1)
c, limx²+2x/x²+4x+4
(limx->2)
d, limx³-x²-x+1/x²-3x+2
(lim x->1)
e, limx³-5x²+3x+9/x4-8x²-9
(lim x->1)
f, lim x4-1/x³-2x²+3
(limx->-1)
g, limx²+2x-3/2x²-x-1
(limx->1)
h,lim x³-3x+2/4-x²
(lim x->-2)
i, lim4x6-5x5+1/x²-1
(lim x->1)
k, lim x mũ m -1/ x mũ n -1
(lim x->1)m, n thuộc N
\(A=\lim\limits_{x\rightarrow2}\frac{\left(x-2\right)\left(2x-1\right)}{x-2}=\lim\limits_{x\rightarrow2}\left(2x-1\right)=3\)
\(B=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)\left(x^2-2x+3\right)}{\left(x-1\right)\left(x+1\right)}=\lim\limits_{x\rightarrow1}\frac{x^2-2x+3}{x+1}=\frac{1-2+3}{1+1}=1\)
\(C=\lim\limits_{x\rightarrow2}\frac{x^2+2x}{x^2+4x+4}=\frac{4+4}{4+8+4}=\frac{1}{2}\)
\(D=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)\left(x^2-1\right)}{\left(x-1\right)\left(x-2\right)}=\lim\limits_{x\rightarrow1}\frac{x^2-1}{x-2}=\frac{0}{-1}=0\)
\(E=\lim\limits_{x\rightarrow1}\frac{x^3-5x^2+3x+9}{x^4-8x^4-9}=\frac{1-5+3+9}{1-8-9}=-\frac{1}{2}\)
\(F=\lim\limits_{x\rightarrow-1}\frac{\left(x+1\right)\left(x-1\right)\left(x^2+1\right)}{\left(x+1\right)\left(x^2-3x+3\right)}=\lim\limits_{x\rightarrow-1}\frac{\left(x-1\right)\left(x^2+1\right)}{x^2-3x+3}=\frac{-2.2}{1+3+3}=-\frac{2}{5}\)
\(G=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)\left(x+3\right)}{\left(x-1\right)\left(2x+1\right)}=\lim\limits_{x\rightarrow1}\frac{x+3}{2x+1}=\frac{4}{3}\)
\(H=\lim\limits_{x\rightarrow-2}\frac{\left(x+2\right)\left(x-1\right)^2}{\left(2-x\right)\left(x+2\right)}=\lim\limits_{x\rightarrow-2}\frac{\left(x-1\right)^2}{2-x}=\frac{9}{4}\)
\(I=\lim\limits_{x\rightarrow1}\frac{4x^6-5x^5+1}{x^2-1}=\lim\limits_{x\rightarrow1}\frac{24x^5-25x^4}{2x}=\frac{24-25}{2}=-\frac{1}{2}\)
\(K=\lim\limits_{x\rightarrow1}\frac{x^m-1}{x^n-1}=\lim\limits_{x\rightarrow1}\frac{mx^{m-1}}{nx^{n-1}}=\frac{m}{n}\)