Giải bất phương trình 1 3 1 - x 2 < 27
A. -1<x<1
B. x<-2 hoặc x>2
C. -2<x<2
D. - 3 < x < 3
giải bất phương trình 2x-3/x-1<1/3
giải bất phương trình 2x-3/x-1 > 1/3
\(\dfrac{2x-3}{x-1}< \dfrac{1}{3}\left(đk:x\ne1\right)\)
\(\Leftrightarrow6x-9< x-1\Leftrightarrow5x< 8\Leftrightarrow x< \dfrac{8}{5}\) và ĐK \(x\ne1\)
\(\dfrac{2x-3}{x-1}>\dfrac{1}{3}\left(đk:x\ne1\right)\)
\(\Leftrightarrow x-1< 6x-9\Leftrightarrow5x>8\Leftrightarrow x>\dfrac{8}{5}\) và ĐK \(x\ne1\)
Bài 1: Giải các bất phương trình:
3(1 - x)> \(\dfrac{7-3x^2}{x+1}\)
Bài 2. Giải và biện luận bất phương trình
( m2 - 4 ) x +3 > ( 2m -1) x +m
Bài I: 1) Giải các phương trình a/8 + 4x = 3x – 1
2) Giải các bất phương trình a) 10 - 5(x + 3) > 3(x - 1)
1) Ta có: \(4x+8=3x-1\)
\(\Leftrightarrow4x-3x=-1-8\)
\(\Leftrightarrow x=-9\)
2) Ta có: \(10-5\left(x+3\right)>3\left(x-1\right)\)
\(\Leftrightarrow10-5x-15-3x+3>0\)
\(\Leftrightarrow-8x>2\)
hay \(x< \dfrac{-1}{4}\)
Giải bất phương trình: (x-1)/(x-3)>1
\(\dfrac{x-1}{x-3}>1\)
⇔ \(\dfrac{x-1}{x-3}>\dfrac{x-3}{x-3}\)
⇔ `x-1>x-3`
⇔ x-x>1-3
⇔ 0x>-2 (luôn đúng)
Vậy ....
ĐKXĐ \(x\ne3\)
\(\dfrac{x-1}{x-3}>1\Leftrightarrow\dfrac{x-1}{x-3}-1>0\Leftrightarrow\dfrac{x-1-x+3}{x-3}>0\Leftrightarrow\dfrac{2}{x-3}>0\Leftrightarrow x-3>0\Leftrightarrow x>3\)
Vậy, x > 3 thì bpt thỏa mãn
\(\dfrac{x-1}{x-3}>1 \)
\(\dfrac{x-1}{x-3}-1>0\)
\(\dfrac{x-1}{x-3}-\dfrac{x-3}{x-3}>0\)
\(\dfrac{2}{x-3}>0\) (tử mẫu cùng dấu) mà 2>0
=>x-3>0
x>3
Giải bất phương trình 3|x-1| > x+1
Giải phương trìnhsau x/2x-6-x/2x+2=2x/(x+1)(x-3) Giải bất phương trình sau 12x+1/12_< 9x+1/3 - 8x+1/4
\(\dfrac{x}{2x-6}-\dfrac{x}{2x+2}=\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\left(ĐKXĐ:x\ne-1,x\ne3\right)\)
\(\Leftrightarrow\dfrac{x}{2\left(x-3\right)}-\dfrac{x}{2\left(x+1\right)}=\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\)
\(\Leftrightarrow\dfrac{x\left(x+1\right)}{2\left(x+1\right)\left(x-3\right)}-\dfrac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\dfrac{2x\cdot2}{2\left(x+1\right)\left(x-3\right)}\)
\(\Rightarrow x\left(x+1\right)-x\left(x-3\right)=4x\)
\(\Leftrightarrow x^2+x-x^2+3x=4x\)
\(\Leftrightarrow x^2+x-x^2+3x-4x=0\)
\(\Leftrightarrow0x=0\)
Phương trình có vô số nghiệm , trừ x = -1,x = 3
Vậy ...
\(\dfrac{12x+1}{12}< \dfrac{9x+1}{3}-\dfrac{8x+1}{4}\)
\(\Leftrightarrow12\cdot\dfrac{12x+1}{12}< 12\cdot\dfrac{9x+1}{3}-12\cdot\dfrac{8x+1}{4}\)
\(\Leftrightarrow12x+1< 4\left(9x+1\right)-3\left(8x+1\right)\)
\(\Leftrightarrow12x+1< 36x+4-24x-3\)
\(\Leftrightarrow12x+1< 12x+1\)
\(\Leftrightarrow12x-12x< 1-1\)
\(\Leftrightarrow0x< 0\)
Vậy S = {x | x \(\in R\)}
Giải bất phương trình sau(x-1)(x+2)>(x-1)²+3
`(x-1)(x+2)>(x-1)^2+3`
`<=> x^2 + 2x -x-2 > x^2 -2x + 1+3`
`<=> x^2 +x -2 > x^2 -2x+4`
`<=> x^2 +x -x^2 +2x> 4+2`
`<=> 3x>6`
`<=> x>2`
Vậy bpt sau có tập nghiệm \(S=\left\{x|x>2\right\}\)
GIẢI PHƯƠNG TRÌNH VÔ TỶ BẰNG PHƯƠNG PHÁP BẤT ĐẲNG THỨC
Giải phương trình
\(\sqrt{x^3+2x}+\sqrt{3x-1}=\sqrt{x^3+4x^2+4x+1}\)
Dạ em không biết ạ,tại vì em mới học lớp 4 ạ,em xin lỗi ạ
Bài 3 :Cho bất phương trình : 3x(2x + 5) x(6x -1) + 4
a) Giải bất phương trình và biểu diễn tập nghiệm trên trục số.
b) Tìm nghiệm nguyên nhỏnhất của bất phương trình trên.