tìm x biết 1/2.1 +1/2.3+1/3.4 +......+1/x.(x+1) =2014/2015
tìm x
1/2.1+1/2.3+1/3.4+1/4.5+.....+1/x(x+1)
Tìm x biết 1/1.2+1/2.3+...+1/x(x+1)=2014/2015
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{x.\left(x+1\right)}=\frac{2014}{2015}\)
\((1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1})=\frac{2014}{2015}\)
\(\Rightarrow1-\frac{1}{x+1}=\frac{2014}{2015}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2015}\)
\(\Rightarrow x+1=2015\)
\(\Leftrightarrow x=2014\)
Vậy x=2014
1/1.2+1/2.3+1/3.4+...+1/x.(x+1)=2015/2016
1/1.2 +1/2.3 +...+ 1/x(x+1) = 2015/2016
<=> 1-1/2 + 1/2 - 1/3 + ... + 1/x - 1/x+1 = 2015/2016
<=> 1 - 1/x+1 = 2015/2016
<=> 1/x+1 = 1/2016
<=> x + 1 = 2016
<=> x = 2015
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{2015}{2016}\)
\(\Leftrightarrow\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2015}{2016}\)
\(\Leftrightarrow1-\frac{1}{x+1}=\frac{2015}{2016}\)
\(\Leftrightarrow\frac{1}{x+1}=1-\frac{2015}{2016}=\frac{1}{2016}\)
\(\Leftrightarrow x+1=2016\Rightarrow x=2015\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}=\frac{2015}{2016}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2015}{2016}\)
\(1-\frac{1}{x+1}=\frac{2015}{2016}\)
\(\frac{1}{x+1}=1-\frac{2015}{2016}=\frac{1}{2016}\)
\(x=2016-1=2015\)
Đáp số: 2015
Tìm x biết :
1/1.2+1/2.3/1/3.4+..+1/x.(x+10)=2015/2016
Các bạn ơi giúp mik nha mai mik phải nộp bài rồi.
Bạn nào nhanh và đúng nhất mik sẽ tick nhé!!!
ukm mik xin lỗi mik viết sai đề đó
Đề sai nhé phải là x(x+1)
Ta có\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{x\left(x+1\right)}=\frac{2015}{2016}\Leftrightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2015}{2016}\)
\(\Leftrightarrow1-\frac{1}{x+1}=\frac{2015}{2016}\Leftrightarrow\frac{x}{x+1}=\frac{2015}{2016}\Rightarrow x=2015\)
Vậy \(x=2015\)
Tìm x, biết
1/1.2+1/2.3+1/3.4+...........+1/x.(x+1)= 2017/2018
2/2.3+2/3.4+2/4.+.......+2/x.(x+1)=2013/2015
\(\dfrac{2}{2\cdot3}+\dfrac{2}{3\cdot4}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2013}{2015}\)
=>\(\dfrac{2}{2}-\dfrac{2}{3}+\dfrac{2}{3}-\dfrac{2}{4}+...+\dfrac{2}{x}-\dfrac{2}{x+1}=\dfrac{2013}{2015}\)
=>\(1-\dfrac{2}{x+1}=\dfrac{2013}{2015}\)
=>\(\dfrac{2}{x+1}=\dfrac{2}{2015}\)
=>x+1=2015
=>x=2014
Tìm một số tự nhiên x biết: 1/2.3 + 1/3.4 + 1/4.5 +....+ 1/x.(x+1)=9/20
(chấm là nhân)
\(\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{9}{20}\)
\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...-\dfrac{1}{x}+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{9}{20}\)
\(\dfrac{1}{2}+0+0+0+...+0-\dfrac{1}{x+1}=\dfrac{9}{20}\)
\(\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{9}{20}\)
\(\dfrac{1}{x+1}=\dfrac{1}{20}\)
\(x+1=20\)
\(x=20-1\)
\(x=19\)
Tìm một số tự nhiên x biết: 1/2.3 + 1/3.4 + 1/4.5 +....+ 1/x.(x+1)=9/20
(chấm là nhân)
Có: \(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{9}{20}\)
\(\Rightarrow\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{x-1}-\dfrac{1}{x}+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{9}{20}\)
\(\Rightarrow\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{9}{20}\)
\(\Rightarrow\dfrac{1}{x+1}=\dfrac{1}{20}\)
\(\Rightarrow x+1=20\Leftrightarrow x=19\)
2/1.2+2/2.3+2/3.4+...+2/x.(x+1)=2038/2015