Cho số phức z thoả mãn |z|=2 và | z 2 + 1 | = 4 . Tính | z + z | + | z - z | .
A. 16.
B. 7 + 3 .
C. 3 + 2 2 .
D. 3 + 7 .
Cho số phức z thoả mãn |z-1-i|=1 Khi 3|z|=2|z-4-4i| đạt giá trị lớn nhất. Tính |z|
A. 2 - 1
B. 2
C. 2 + 1
D. 3
Đặt
Khi đó
Dấu bằng đạt tại
Chọn đáp án B.
Cho số phức Z thoả mãn (1+2i)z-5= 3i tìm số phức liên hợp z 2/ cho số phức z=a+bi(a, b thuộc R) thoả mãn 3z-5z ngan -6+10i=0 .tính a-b
\(\left(1+2i\right)z-5=3i\Leftrightarrow\left(1+2i\right)z=5+3i\)
\(\Rightarrow z=\dfrac{5+3i}{1+2i}=\dfrac{11}{5}-\dfrac{7}{5}i\)
\(\Rightarrow\overline{z}=\dfrac{11}{5}+\dfrac{7}{5}i\)
2.
Đề câu này là: \(3z-5\overline{z}-6+10i=0\) đúng không nhỉ?
Cho số phức z = a + b i a , b ∈ ℝ thoả mãn z+3+i-|z|(2+i)=0 và |z|>1. Tính P=a+2b.
A. P = -1
B. P = 8
C. P = 7
D. P = 5
Cho số phức z thoả mãn 2|z-1-i|=|z+2-3i|+2|z-4+i|. Giá trị lớn nhất của |z| bằng
A. 17
B. 13
C. 10
D. 2 5
Cho số phức z thoả mãn 2 z + 1 2 = z - i 2 . Tính môđun của số phức z+2+i.
A.1
B.3
C.4
D.2
Cho số phức z thoả mãn |z|=3 và | z 2 + 9 | = 9 3 . Tính P=|z+ z |+|z-z ̄ |.
A. 3 + 3 3
B. 3 + 3
C. 3 + 3 2
D. 6 + 3
Xét tập (A) gồm các số phức z thoả mãn z - 2 i z - 2 là số thuần ảo và các giá trị thực m,n sao cho chỉ có duy nhất một số phức z ∈ ( A ) thoả mãn |z-m-ni|= 2 . Đặt M=max( m+n) và N=min( m+n). Tính P=M+N.
A. P = -2
B. P = -4
C. P = 4
D. P = 2
Cho các số phức \(z_1\), \(z_2\) thoả mãn \(\left|z-2\right|=\left|z\right|\) và \(\left|z_2-z_1\right|=4\). Số phức \(w\) thoả mãn \(\left|w-3-5i\right|=1\), số phức \(u\) thoả mãn \(\left|u-4+4i\right|=2\). Giá trị nhỏ nhất của \(T=\left|w-z_2\right|+\left|u-z_1\right|\) là
A. \(5\sqrt{3}-3\) B. \(5\sqrt{2}-3\) C. \(2\sqrt{5}-3\) D. \(5\sqrt{3}-2\)
Cho N là điểm biểu diễn số phức z thỏa mãn \(\dfrac{z+2-3i}{z-3}=1-i\) và M là điểm biểu diễn số phức z' thoả mãn \(\left|z'-2-i\right|+\left|z'+3-3i\right|=\sqrt{29}\). Tìm giá trị nhỏ nhất của MN