Những câu hỏi liên quan
PB
Xem chi tiết
CT
29 tháng 9 2018 lúc 6:16

Đáp án C

Bình luận (0)
PB
Xem chi tiết
CT
14 tháng 12 2017 lúc 15:03

 

 

 

 

Bình luận (0)
HN
Xem chi tiết
PB
Xem chi tiết
CT
6 tháng 8 2018 lúc 6:27

Bình luận (0)
MN
Xem chi tiết
NL
20 tháng 12 2020 lúc 23:23

\(f'\left(x\right)=cosx\)

\(f''\left(x\right)=-sinx\)

\(f^{\left(3\right)}\left(x\right)=-cosx\)

\(f^{\left(4\right)}\left(x\right)=sinx\)

Từ đó ta thấy được:

\(f^{\left(4k\right)}\left(x\right)=sinx\)

\(f^{\left(4k+1\right)}\left(x\right)=cosx\)

\(f^{\left(4k+2\right)}\left(x\right)=-sinx\)

\(f^{\left(4k+3\right)}\left(x\right)=-cosx\)

\(\Rightarrow f^{\left(4k\right)}\left(x\right)+f^{\left(4k+1\right)}\left(x\right)+f^{\left(4k+2\right)}\left(x\right)+f^{\left(4k+3\right)}\left(x\right)=0\)

\(\Rightarrow S=f^{\left(2017\right)}\left(x\right)+f^{\left(2018\right)}\left(x\right)+f^{\left(2019\right)}\left(x\right)\)

(Toàn bộ phần tổng đằng trước nhóm thành các cụm 4 số và triệt tiêu)

\(S=f^{\left(4.504+1\right)}\left(x\right)+f^{\left(4.504+2\right)}\left(x\right)+f^{\left(4.504+3\right)}\left(x\right)\)

\(=cosx-sinx-cosx=-cosx\)

Bình luận (0)
MN
21 tháng 12 2020 lúc 18:15

undefined

Bình luận (0)
NL
22 tháng 12 2020 lúc 9:29

Câu 35. Do cần tính giá trị \(g\left(1\right)\) nên chỉ cần xét khi \(x>0\)

Giả thiết\(\Rightarrow f'\left(x\right)-\dfrac{1}{2x}f\left(x\right)=-\dfrac{1}{2}-\dfrac{2}{x}\)

\(\Leftrightarrow\dfrac{1}{\sqrt{x}}.f'\left(x\right)-\dfrac{1}{2x\sqrt{x}}f\left(x\right)=-\dfrac{1}{2\sqrt{x}}-\dfrac{2}{x\sqrt{x}}\)

\(\Leftrightarrow\left[\dfrac{1}{\sqrt{x}}.f\left(x\right)\right]'=-\dfrac{1}{2\sqrt{x}}-\dfrac{2}{x\sqrt{x}}\)

\(\Rightarrow\dfrac{f\left(x\right)}{\sqrt{x}}=-\sqrt{x}+\dfrac{4}{\sqrt{x}}+C\)

Thay \(x=1\)

\(\Leftrightarrow\dfrac{5}{1}=-1+4+C\Rightarrow C=2\)

\(\Rightarrow f\left(x\right)=-x+4+2\sqrt{x}\)

Kì vậy ta, kết quả này thì \(g'\left(1\right)=\dfrac{1}{25}\) không có đáp án nào hết.

Mặc dù thay hàm \(f\left(x\right)\) vào điều kiện đề bài thỏa mãn

Bình luận (1)
PB
Xem chi tiết
CT
22 tháng 4 2018 lúc 7:03

Bình luận (0)
PB
Xem chi tiết
CT
7 tháng 4 2019 lúc 10:27


Bình luận (0)
PB
Xem chi tiết
CT
22 tháng 10 2018 lúc 7:19

Đáp án C

 

Chứng minh nhận xét: Nếu a + b = 1 thì

Bình luận (0)
PB
Xem chi tiết
CT
18 tháng 8 2019 lúc 7:18

Bình luận (0)
PB
Xem chi tiết
CT
24 tháng 10 2019 lúc 9:35

Ta có 

Quan sát đồ thị có 

Đặt  phương trình trở thành:

Khi đó

Phương trình này có 3 nghiệm phân biệt

Tổng các phần tử củaS bằng 

Chọn đáp án C.

Bình luận (0)