Những câu hỏi liên quan
TM
Xem chi tiết
TD
Xem chi tiết
NL
Xem chi tiết
NT
23 tháng 2 2021 lúc 22:09

Câu 1: 

a) Để hàm số \(y=\left(3m+5\right)\cdot x^2\) nghịch biến với mọi x>0 thì \(3m+5< 0\)

\(\Leftrightarrow3m< -5\)

hay \(m< -\dfrac{5}{3}\)

Vậy: Để hàm số \(y=\left(3m+5\right)\cdot x^2\) nghịch biến với mọi x>0 thì \(m< -\dfrac{5}{3}\)

b) Để hàm số \(y=\left(3m+5\right)\cdot x^2\) đồng biến với mọi x>0 thì

3m+5>0

\(\Leftrightarrow3m>-5\)

hay \(m>-\dfrac{5}{3}\)

Vậy: Để hàm số \(y=\left(3m+5\right)\cdot x^2\) đồng biến với mọi x>0 thì \(m>-\dfrac{5}{3}\)

Bình luận (0)
NL
23 tháng 2 2021 lúc 22:41

2.

Để hàm nghịch biến với x>0 \(\Leftrightarrow\sqrt{3k+4}-3< 0\)

\(\Leftrightarrow\sqrt{3k+4}< 3\Leftrightarrow3k+4< 9\)

\(\Rightarrow-\dfrac{4}{3}\le k< \dfrac{5}{3}\)

Để hàm đồng biến khi x>0

\(\Leftrightarrow\sqrt{3k+4}-3>0\Leftrightarrow\sqrt{3k+4}>3\)

\(\Leftrightarrow3k+4>9\Rightarrow k>\dfrac{5}{3}\)

Bình luận (0)
NV
Xem chi tiết
PB
Xem chi tiết
CT
13 tháng 8 2017 lúc 5:15

Đáp án B

Bình luận (0)
AP
Xem chi tiết
HT
25 tháng 2 2022 lúc 20:48

a) Để m đạt giá trị lớn nhất là 0 thì \(y=\left(3m-4\right)x^2\le0\) ⇔ \(3m-4\le0\)

                                                                                       ⇔ \(m\le\dfrac{4}{3}\) nhưng theo điều kiện  

                                                                                             thì m ≠ \(\dfrac{4}{3}\)

➤ Để m đạt giá trị lớn nhất là 0 thì \(m< \dfrac{4}{3}\)

b) Để m đạt giá trị nhỏ nhất là 0 thì \(y=\left(3m-4\right)x^2\ge0\) ⇔ \(3m-4\ge0\)

                                                                                       ⇔ \(m\ge\dfrac{4}{3}\) nhưng theo điều kiện  

                                                                                           thì m ≠ \(\dfrac{4}{3}\)

➤ Để m đạt giá trị nhỏ nhất là 0 thì \(m>\dfrac{4}{3}\)

                                                                                        

 

Bình luận (0)
KR
Xem chi tiết
HP
22 tháng 3 2021 lúc 6:13

b, \(\left\{{}\begin{matrix}x^2-2x-3\le0\\x^2-2mx+m^2-9\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-1\le x\le3\\x^2-2mx+m^2-9\ge0\end{matrix}\right.\)

Yêu cầu bài toán thỏa mãn khi phương trình \(f\left(x\right)=x^2-2mx+m^2-9\ge0\) có nghiệm \(x\in\left[-1;3\right]\)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=m^2-m^2+9=9>0,\forall m\\-1< m< 3\\f\left(-1\right)=m^2+2m-8\ge0\\f\left(3\right)=m^2-6m\ge0\end{matrix}\right.\)

\(\Leftrightarrow m\in[2;3)\cup(-1;0]\)

Bình luận (0)
PB
Xem chi tiết
CT
11 tháng 5 2018 lúc 6:25

Bình luận (0)
RT
Xem chi tiết
H24
18 tháng 10 2021 lúc 21:25

Dễ thấy: \(f\left(x\right)=\left(x+m-1\right)^2-m^2+5m-6\ge-m^2+5m-6\)

Giá trị nhỏ nhất của f(x) đạt lớn nhất tức \(-m^2+5m-6\) đạt lớn nhất

Mà \(g\left(m\right)=-m^2+5m-6=-\left(m-\dfrac{5}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)

g(m) đạt lớn nhất khi m=5/2

m cần tìm là 5/2

Bình luận (0)
NA
Xem chi tiết
NT
22 tháng 11 2023 lúc 7:50

loading...  loading...  loading...  

Bình luận (2)