Những câu hỏi liên quan
NG
Xem chi tiết
NM
1 tháng 11 2021 lúc 10:16

\(a,=3xy^2\\ b,=\dfrac{1}{4}x^3+x-\dfrac{3}{2}\\ c,=-2x^2+xy+5x^3y^2\\ d,=\left(3x-y\right)\left(9x^2+3xy+y^2\right):\left(3x-y\right)=9x^2+3xy+y^2\)

Bình luận (0)
NL
18 tháng 3 2021 lúc 12:03

\(\Leftrightarrow x^5-1=4x^4+4x^3+4x^2+4x+4\)

\(\Leftrightarrow\left(x-1\right)\left(x^4+x^3+x^2+x+1\right)=4\left(x^4+x^3+x^2+x+1\right)\)

\(\Leftrightarrow\left(x-5\right)\left(x^4+x^3+x^2+x+1\right)=0\)

\(\Leftrightarrow x=5\)

Bình luận (0)
PB
Xem chi tiết
CT
12 tháng 9 2017 lúc 17:51

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Bình luận (0)
PB
Xem chi tiết
CT
8 tháng 11 2018 lúc 8:02

* f(x) = x2 + 2x3− 7x5 − 9 − 6x7 + x3 + x2 + x5 − 4x2 + 3x7

= (x2+ x2 – 4x2)+ (2x3 + x3 ) - (7x5 - x5 ) – 9 – (6x7 – 3x7)

= - 2x2 + 3x3 – 6x5 – 9 – 3x7

Sắp xếp theo thứ tự tăng của biến: f(x) = −9 − 2x2 + 3x3 − 6x5 − 3x7

* g(x) = x5 + 2x3 − 5x8 − x7 + x3 + 4x2 -5x7 + x4 − 4x2 − x6 – 12

= x5+ (2x3 + x3) - 5x8 – (x7+ 5x7) + (4x2 – 4x2 ) + x4 – x6 – 12

= x5 + 3x3 – 5x8 – 6x7 + x4 – x6 – 12

Sắp xếp theo thứ tự tăng của biến: g(x) = −12 + 3x3 + x4 + x5 – x6 − 6x7− 5x8

* h(x) = x + 4x5 − 5x6 − x7 + 4x3 + x2 − 2x7 + x6 − 4x2 − 7x7 + x.

= (x+ x) +4x5 – (5x6 – x6)- (x7 + 2x7+ 7x7) + 4x3+ (x2 – 4x2)

= 2x + 4x5 - 4x6 – 10x7 + 4x3 -3x2

Sắp xếp theo thứ tự tăng của biến: h(x) = 2x − 3x2 + 4x3 + 4x5 − 4x6 − 10x7

Bình luận (0)
NT
Xem chi tiết
HS
10 tháng 12 2020 lúc 19:25

a) \(\left(x^5+4x^3-6x^2\right):4x^2\)

\(=\left(x^5:4x^2\right)+\left(4x^3:4x^2\right)+\left(-6x^2:4x^2\right)\)

\(=\dfrac{1}{4}x^3+x-\dfrac{3}{2}\)

b)  x^3 + x^2 - 12 x-2 x^3 - 2x^2 3x^2 - 12 3x^2 - 6x 6x - 12 x^2+3x+6 6x - 12 0

Vậy \(\left(x^3+x^2-12\right):\left(x-2\right)=x^2+3x+6\)

c) (-2x5 : 2x2) + (3x2 : 2x2) + (-4x^3 : 2x^2)

\(-x^3+\dfrac{3}{2}-2x\)

d) \(\left(x^3-64\right):\left(x^2+4x+16\right)\)

\(=\left(x-4\right)\left(x^2+4x+16\right):\left(x^2+4x+16\right)\)

\(=x-4\)

(dùng hẳng đẳng thức thứ 7)

Bài 2 :

a) 3x(x - 2) - 5x(1 - x) - 8(x2 - 3)

= 3x2 - 6x - 5x + 5x2 - 8x2 + 24

= (3x2 + 5x2 - 8x2) + (-6x - 5x) + 24 

= -11x + 24

b) (x - y)(x2 + xy + y2) + 2y3

= x3 - y3 + 2y3

= x3 + y3 

c) (x - y)2 + (x + y)2 - 2(x - y)(x + y)

= (x - y)2 - 2(x - y)(x + y) + (x + y)2

= [(x - y) + x + y)2 = [x - y + x + y] = (2x)2 = 4x2

 

Bình luận (0)
HP
18 tháng 10 2021 lúc 11:14

Bài 1 :

a]=  \(\frac{1}{4}\)x3 + x - \(\frac{3}{2}\).

b] => [x3 + x2 -12 ] = [ x2 +3 ][x-2] + [-6]

c]= -x3 -2x +\(\frac{3}{2}\).

d] = [ x3 - 64 ]  = [ x2 + 4x + 16][ x- 4].

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
1 tháng 1 2017 lúc 18:14

f(x) = x5 + 3x2 − 5x3 − x7 + x3 + 2x2 + x5 − 4x2 + x7

= (x5 + x5) + (3x2 + 2x2 – 4x2) + (-5x3 + x3) + (-x7 + x7)

= 2x5 + x2 – 4x3.

= 2x5 - 4x3 + x2

Đa thức có bậc là 5

g(x) = x4 + 4x3 – 5x8 – x7 + x3 + x2 – 2x7 + x4 – 4x2 – x8

= (x4 + x4) + (4x3 + x3) – (5x8 + x8) – (x7 + 2x7) + (x2 – 4x2)

= 2x4 + 5x3 – 6x8 – 3x7 – 3x2

= -6x8 - 3x7 + 2x4 + 5x3 - 3x2.

Đa thức có bậc là 8.

Bình luận (0)
PA
22 tháng 2 2021 lúc 11:44

Đa thức có bậc là 5 nhe

Bình luận (0)
 Khách vãng lai đã xóa
PH
Xem chi tiết
NT
8 tháng 1 2024 lúc 11:05

a: \(A=x^3y-12xy-x^2y\)

\(=xy\cdot x^2-xy\cdot12-xy\cdot x\)

\(=xy\left(x^2-x-12\right)\)

\(=xy\left(x^2-4x+3x-12\right)\)

\(=xy\left[x\left(x-4\right)+3\left(x-4\right)\right]\)

\(=xy\left(x-4\right)\left(x+3\right)\)

c: \(C=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-120\)

=(x+1)(x+4)(x+2)(x+3)-120

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-120\)

\(=\left(x^2+5x\right)^2+10\left(x^2+5x\right)+24-120\)

\(=\left(x^2+5x\right)^2+10\left(x^2+5x\right)-96\)

\(=\left(x^2+5x+16\right)\left(x^2+5x-6\right)\)

\(=\left(x^2+5x+16\right)\left(x+6\right)\left(x-1\right)\)

d: \(D=x^5-x^4+x^2-1\)

\(=\left(x^5-x^4\right)+\left(x^2-1\right)\)

\(=x^4\left(x-1\right)+\left(x-1\right)\left(x+1\right)\)

\(=\left(x-1\right)\left(x^4+x+1\right)\)

Bình luận (1)
TL
8 tháng 1 2024 lúc 11:35

Đặt năm câu ghép xác định chủ ngữ vị ngữ

Bình luận (0)
H24
Xem chi tiết
NT
8 tháng 8 2021 lúc 21:46

c) Ta có: \(C=4x^2+y^2-4xy+8x-4y+4\)

\(=\left(2x-y\right)^2+2\cdot\left(2x-y\right)\cdot2+2^2\)

\(=\left(2x-y+2\right)^2\)

Bình luận (1)
TT
Xem chi tiết
NT
15 tháng 10 2021 lúc 22:49

c: \(x^4+x^3-4x^2+x+1\)

\(=x^4-x^3+2x^3-2x^2-2x^2+2x-x+1\)

\(=\left(x-1\right)\left(x^3+2x^2-2x-1\right)\)

\(=\left(x-1\right)\left[\left(x-1\right)\left(x^2+x+1\right)+2x\left(x-1\right)\right]\)

\(=\left(x-1\right)^2\cdot\left(x^2+3x+1\right)\)

Bình luận (0)