Những câu hỏi liên quan
MN
Xem chi tiết
NL
29 tháng 3 2021 lúc 22:30

Đề không cho sẵn dãy tăng à? Vậy phải chứng minh nó tăng trước

\(u_{n+1}=\dfrac{u_n^2+2018u_n+1}{2020}\)

\(u_{n+1}-u_n=\dfrac{u_n^2+2018u_n+1}{2020}-u_n=\dfrac{\left(u_n-1\right)^2}{2020}\ge0\) \(\Rightarrow\) dãy tăng và không bị chặn trên \(\Rightarrow lim\left(u_n\right)=+\infty\)

\(\Rightarrow2020u_{n+1}=u_n^2+2018u_n+1\)

\(\Leftrightarrow2020u_{n+1}-2020=u_n^2+2018u_n-2019\)

\(\Leftrightarrow2020\left(u_{n+1}-1\right)=\left(u_n+2019\right)\left(u_n-1\right)\)

\(\Rightarrow\dfrac{1}{2020\left(u_{n+1}-1\right)}=\dfrac{1}{\left(u_n+2019\right)\left(u_n-1\right)}=\dfrac{1}{2020}\left(\dfrac{1}{u_n-1}-\dfrac{1}{u_n+2019}\right)\)

\(\Rightarrow\dfrac{1}{u_n+2019}=\dfrac{1}{u_n-1}-\dfrac{1}{u_{n+1}-1}\)

Thế n=1;2;...;n ta được:

\(\dfrac{1}{u_1+2019}=\dfrac{1}{u_1-1}-\dfrac{1}{u_2-1}\)

\(\dfrac{1}{u_2+2019}=\dfrac{1}{u_2-1}-\dfrac{1}{u_3-1}\)

...

\(\dfrac{1}{u_n+2019}=\dfrac{1}{u_n-1}-\dfrac{1}{u_{n+1}-1}\)

Cộng vế: \(S_n=\dfrac{1}{u_n-1}-\dfrac{1}{u_{n+1}-1}=\dfrac{1}{2018}-\dfrac{1}{u_{n+1}-1}\)

\(\Rightarrow\lim\left(S_n\right)=\dfrac{1}{2018}-\dfrac{1}{\infty}=\dfrac{1}{2018}\)

Bình luận (0)
VH
Xem chi tiết
MN
Xem chi tiết
AH
28 tháng 3 2021 lúc 21:09

Lời giải:

$\frac{u_{n-1}}{u_n}=\frac{n^2}{n^2-1}>0$ với mọi $n\geq 2$ nên $u_{n-1}, u_n$ luôn cùng dấu.

Mà $u_1=2017>0$ nên $u_n>0$ với mọi $n=1,2,...$

Mặt khác:

$n^2(u_{n-1}-u_n)=u_{n-1}>0\Rightarrow u_{n-1}>u_n$ nên dãy $(u_n)$ là dãy giảm.

Dãy giảm và bị chặn dưới nên $u_n$ hội tụ. Đặt $\lim u_n=a$. 

Ta có: $a=n^2(a-a)\Rightarrow a=0$

Vậy $\lim u_n=0$

 

Bình luận (0)
PB
Xem chi tiết
CT
5 tháng 11 2017 lúc 1:52

Chọn A

Phương pháp: Tìm công thức số hạng tổng quát

Cách giải: Ta có:

u ( 1 ) = 1

u ( 2 ) = u ( 1 ) + u ( 1 ) = 2 u ( 1 ) + 1

u ( 3 ) = u ( 2 ) + u ( 1 ) = 3 u ( 1 ) + 1 + 2

u ( 4 ) = u ( 3 ) + u ( 1 ) = 4 u ( 1 ) + 1 + 2 + 3

. . .

u ( 2017 ) = u ( 2016 ) + u ( 1 ) = 2017 u ( 1 ) + 1 + 2 + 3 . . . + 2016

⇒ u ( 2017 ) = 1 + 2 + 3 . . . + 2016 + 2017 = 2035153

Bình luận (0)
PB
Xem chi tiết
CT
7 tháng 12 2017 lúc 3:52

Chọn B.

Ta có: u1 = 1; u2 = 3/2; u3 = 17/6; u4 = 227/34.

Ta chứng minh un > 0 bằng quy nạp.

Giả sử un > 0, khi đó: 

Nên .

Bình luận (0)
DD
Xem chi tiết
PB
Xem chi tiết
CT
22 tháng 4 2017 lúc 4:43

Đáp án A

Bình luận (0)
BB
Xem chi tiết
BB
Xem chi tiết