Ôn tập cuối năm môn Đại số 11

MN

Cho dãy số (un) được xác định như sau: u1= 2017; un-1= n2(un-1 - un) với mọi n ∈ N*, n ≥2. Tìm giới hạn dãy số (un)

AH
28 tháng 3 2021 lúc 21:09

Lời giải:

$\frac{u_{n-1}}{u_n}=\frac{n^2}{n^2-1}>0$ với mọi $n\geq 2$ nên $u_{n-1}, u_n$ luôn cùng dấu.

Mà $u_1=2017>0$ nên $u_n>0$ với mọi $n=1,2,...$

Mặt khác:

$n^2(u_{n-1}-u_n)=u_{n-1}>0\Rightarrow u_{n-1}>u_n$ nên dãy $(u_n)$ là dãy giảm.

Dãy giảm và bị chặn dưới nên $u_n$ hội tụ. Đặt $\lim u_n=a$. 

Ta có: $a=n^2(a-a)\Rightarrow a=0$

Vậy $\lim u_n=0$

 

Bình luận (0)

Các câu hỏi tương tự
MN
Xem chi tiết
MN
Xem chi tiết
MN
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
NM
Xem chi tiết
TD
Xem chi tiết