Kết quả của biểu thức 2017 x 74 + 25 x 2017 + 2017 bằng:
A. 20170
B.2017
C. 201700
D. 2107
mọi người giúp em với ạ giá trị của biểu thức x(x-20170)+y(2017-x)tại x=2020;y=2018
\(=\left(x-2017\right)\left(x-y\right)\)
=2x3=6
Cho a+b+c khác 0;a,b,c khác 0 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
a Chứng minh \(\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}=\frac{1}{a^{2107}+b^{2017}+c^{2017}}\)
b Tổng quát bài toán trên
a ) \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{c-\left(a+b+c\right)}{ac+bc+c^2}\)
\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2\right)+ab\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ab+bc+c^2+ac\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left[b\left(a+c\right)+c\left(a+c\right)\right]\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)
=> a = - b hoặc b = - c hoặc a = - c
Xét a = - b ta có :
\(\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}=\left(\frac{1}{-b^{2017}}+\frac{1}{b^{2017}}\right)+\frac{1}{c^{2017}}=\frac{1}{c^{2017}}\) (1)
\(\frac{1}{a^{2017}+b^{2017}+c^{2017}}=\frac{1}{\left(-b^{2017}+b^{2017}\right)+c^{2017}}=\frac{1}{c^{2017}}\) (2)
Từ (1) ; (2) => \(\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}=\frac{1}{a^{2017}+b^{2017}+c^{2017}}\)
Tới đây bạn xét tiếp 2 TH b = - c và c = - a nữa ta có đpcm nha
b ) TQ :
Nếu a +b +c khác 0; a;b;c khác 0 ; \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\) thì \(\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{a^n+b^n+c^n}\)
Tính giá trị của biểu thức
A=x8-2017.x7 + 2017.x6 - 2017x5 +...-2017.x + 2017
f﴾2016﴿=2016^8 ‐ 2017*2016^7 +2017*2016^6 ‐ 2017*2016^5 +...+2017*2016^2 ‐ 2017*2016+ 2018
=2016^8 ‐﴾ 2016^8 + 2016﴿ + ﴾2016^7+2016﴿ ‐ ﴾2016^6 + 2016﴿+....+2016^3+2016 ‐﴾ 2016^2 + 2016﴿+2018
=2018
a,tính giá trị nhỏ nhất của biểu thức A\(=\left(y-2017\right)^{2014}-2017\)
b. tính GT biểu thức B= \(3x^2-2xy+6042\) biết \(|3y-6045|^{2011}\le(x-1)^{2017}+x\left(1-x\right)^{2017}\)
a/ Do \(\left(y-2017\right)^{2014}\ge0\) \(\forall y\Rightarrow A\ge-2017\)
\(\Rightarrow A_{min}=-2017\) khi \(y-2017=0\Rightarrow y=2017\)
b/ \(\left|3y-6045\right|^{2011}\le\left(x-1\right)^{2017}-x\left(x-1\right)^{2017}\)
\(\Leftrightarrow\left|3y-6045\right|^{2011}\le\left(1-x\right)\left(x-1\right)^{2017}\)
\(\Leftrightarrow\left|3y-6045\right|^{2011}\le-\left(x-1\right)\left(x-1\right)^{2017}\)
\(\Leftrightarrow\left|3y-6045\right|^{2011}\le-\left(x-1\right)^{2018}\) (1)
Mà \(\left\{{}\begin{matrix}\left|3y-6045\right|^{2011}\ge0\\-\left(x-1\right)^{2018}\le0\end{matrix}\right.\)
Nên (1) xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}\left|3y-6045\right|^{2011}=0\\-\left(x-1\right)^{2018}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3y-6045=0\\x-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=2015\end{matrix}\right.\)
\(\Rightarrow B=3.1^2-2.1.2015+6042=2015\)
Tìm GTNN của biểu thức \(A=\frac{\left|x-2017\right|+2017}{\left|x-2017\right|+2018}\)
Đặt: \(\left|x-2017\right|=t\ge0\) ta có: \(l=\frac{t+2017}{t+2018}=\frac{t+2018-1}{t+2018}=1-\frac{1}{t+2018}\ge1-\frac{1}{2018}=\frac{2017}{2018}\)
Dấu "=" xảy ra khi: \(t=0\Leftrightarrow x=2017\)
Đặt: |x−2017|=t≥0 ta có: l=t+2017t+2018 =t+2018−1t+2018 =1−1t+2018 ≥1−12018 =20172018
Dấu "=" xảy ra khi: t=0⇔x=2017
...
..
\(A=\frac{\left|x-2017\right|+2017}{\left|x-2017\right|+2018}=1-\frac{1}{\left|x-2017\right|+2018}\)
A bé nhất khi \(\frac{1}{\left|x-2017\right|+2018}\) lớn nhất.
Mà \(\frac{1}{\left|x-2018\right|+2018}\le\frac{1}{2018}\forall x\) (do \(\left|x-2018\right|\ge0\forall x\))
Suy ra \(A\ge1-\frac{1}{2018}=\frac{2017}{2018}\)
Dấu "=" xảy ra \(\Leftrightarrow\left|x-2017\right|=0\Leftrightarrow x=2017\)
Vậy \(A_{min}=\frac{2017}{2018}\Leftrightarrow x=2017\)
a) Cho ba số a, b, c thỏa mãn (a + b + c) (ab + bc + ca) = 2017 và abc = 2017
Tính giá trị của biểu thức P = (b2c + 2017) (c2a + 2017) (a2b + 2017)
b) Tìm các số tự nhiên x, n sao cho số P = x4 + 24n+2 là một số nguyên tố.
Câu hỏi của Đinh Đức Hùng - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo câu b tại đây nhé.
Tính giá trị biểu thức A= a2017/b2017 +b2017/c2017+c2017/a2017
Cho a+b+c khác 0;a,b,c khác 0 và \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)
a Chứng minh \(\dfrac{1}{a^{2017}}+\dfrac{1}{b^{2017}}+\dfrac{1}{c^{2017}}=\dfrac{1}{a^{2107}+b^{2017}+c^{2017}}\)
b Tổng quát bài toán trên
Cho a,b,c là các số dương thỏa mãn \(a^3+b^3+c^3=3abc\)
Hãy tính giá trị của biểu thức A = \(\frac{a^{2017}}{b^{2017}}+\frac{b^{2017}}{c^{2017}}+\frac{c^{2017}}{a^{2017}}\)
\(a^3+b^3+c^3=3abc\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Leftrightarrow\frac{\left(a+b+c\right)}{2}.\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)
\(\Leftrightarrow a=b=c\) (a,b,c là các số dương)
Bạn thay vào A để tính.