Những câu hỏi liên quan
TG
Xem chi tiết
NL
18 tháng 4 2021 lúc 11:52

Đặt \(A=a^5+b^5+c^5\)

\(A-\left(a+b+c\right)=a^5-a+b^5-b+c^5-c\)

Ta có: \(B=a^5-a=a\left(a^4-1\right)=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)

Nếu \(a\) chia hết cho 5 \(\Rightarrow B\) chia hết cho 5

Nếu a chia 5 dư 1 hoặc -1 \(\Rightarrow\left(a-1\right)\left(a+1\right)\) chia hết chi 5 \(\Rightarrow\)B chia hết cho 5

Nếu a chia 5 dư 2 hoặc -2 \(\Rightarrow a^2+1\) chia 5 dư \(\left(\pm2\right)^2+1=5\Rightarrow a^2+1⋮5\Rightarrow B⋮5\)

Vậy \(B=a^5-a⋮5\) với mọi a nguyên

Hoàn toàn tương tự, \(b^5-b\) và \(c^5-c\) chia hết cho 5 với mọi b; c

\(\Rightarrow A-\left(a+b+c\right)⋮5\Rightarrow A⋮5\) (đpcm)

(Có thể ngắn gọn hơn là \(a^5\equiv a\left(mod5\right)\Rightarrow a^5-a⋮5\) ; \(\forall a\in Z\))

Bình luận (0)
H24
Xem chi tiết
H24
29 tháng 7 2021 lúc 16:00

khocroi

Bình luận (0)
UN
Xem chi tiết
H24
Xem chi tiết
TH
23 tháng 6 2023 lúc 10:53

loading...

Bình luận (0)
NM
Xem chi tiết
NT
14 tháng 6 2015 lúc 9:19

vì a=b=c nên a chỉ có thể bằng 0 hoặc 5 mà thôi vì b+c chia hết cho 5

Bình luận (0)
NL
Xem chi tiết
NN
9 tháng 11 2017 lúc 19:23

1)

a)\(B=3+3^3+3^5+3^7+.....+3^{1991}\)

\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)

\(3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)chia hết cho 3 nên \(B⋮3\)

\(B=3+3^3+3^5+3^7+.....+3^{1991}\)

\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+.....+\left(3^{1988}+3^{1989}+3^{1990}+3^{1991}\right)\)

\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6\right)+.....+3^{1988}\left(1+3^2+3^4+3^6\right)\)

\(\Leftrightarrow B=3.820+.....+3^{1988}.820\)

\(\Leftrightarrow B=3.20.41+.....+3^{1988}.20.41\)

\(3.20.41+.....+3^{1988}.20.41\) chia hết cho 41 nên \(B⋮41\)

Bình luận (0)
DN
Xem chi tiết
NH
Xem chi tiết
NM
22 tháng 11 2021 lúc 8:29

a/ 

\(\overline{aba}=101.a+10b=98a+3a+7b+3b=\)

\(=\left(98a+7b\right)+3\left(a+b\right)\)

\(98a+7b⋮7;\left(a+b\right)⋮7\Rightarrow3\left(a+b\right)⋮7\)

\(\Rightarrow\overline{abc}=\left(98a+7b\right)+3\left(a+b\right)⋮7\)

b/ xem lại đề bài

Bình luận (0)
 Khách vãng lai đã xóa
LN
Xem chi tiết
H24
20 tháng 1 2017 lúc 20:59

Ta có:

3a + 18b = 3(a + 6b) = 3[(a + b) + 5b]

Mà a + b \(⋮\) 5 và 5b \(⋮\) 5

=> (a + b) + 5b \(⋮\) 5

=> 3[(a + b) + 5b] \(⋮\) 5

=> 3a + 18b \(⋮\) 5 (đpcm)

Bình luận (0)
HN
20 tháng 1 2017 lúc 20:59

3a + 18b = 3(a + b) + 15b

Mà (a + b) chia hết cho 5 và 15b chia hết cho 6 nên 3a + 18b chia hết cho 5

Bình luận (0)