Violympic toán 8

TG

Cho a,b,c là các số nguyên và a + b + c chia hết cho 5. Chứng minh a5 + b5 + c5 chia hết cho 5

NL
18 tháng 4 2021 lúc 11:52

Đặt \(A=a^5+b^5+c^5\)

\(A-\left(a+b+c\right)=a^5-a+b^5-b+c^5-c\)

Ta có: \(B=a^5-a=a\left(a^4-1\right)=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)

Nếu \(a\) chia hết cho 5 \(\Rightarrow B\) chia hết cho 5

Nếu a chia 5 dư 1 hoặc -1 \(\Rightarrow\left(a-1\right)\left(a+1\right)\) chia hết chi 5 \(\Rightarrow\)B chia hết cho 5

Nếu a chia 5 dư 2 hoặc -2 \(\Rightarrow a^2+1\) chia 5 dư \(\left(\pm2\right)^2+1=5\Rightarrow a^2+1⋮5\Rightarrow B⋮5\)

Vậy \(B=a^5-a⋮5\) với mọi a nguyên

Hoàn toàn tương tự, \(b^5-b\) và \(c^5-c\) chia hết cho 5 với mọi b; c

\(\Rightarrow A-\left(a+b+c\right)⋮5\Rightarrow A⋮5\) (đpcm)

(Có thể ngắn gọn hơn là \(a^5\equiv a\left(mod5\right)\Rightarrow a^5-a⋮5\) ; \(\forall a\in Z\))

Bình luận (0)

Các câu hỏi tương tự
NA
Xem chi tiết
KH
Xem chi tiết
NH
Xem chi tiết
HV
Xem chi tiết
HV
Xem chi tiết
LN
Xem chi tiết
H24
Xem chi tiết
VH
Xem chi tiết
US
Xem chi tiết