Tính giá trị của các biểu thức sau: x(x – y) + y(y – x) tại x= 53 và y =3
tính giá trị của biểu thức sau
x ( x - y ) + y ( y - x ) tại x = 53 và y = 3
Ta có: x ( x - y ) + y ( y - x ) = x(x-y) - y(x-y) =(x-y)^2
Thay x= 53 và y= 3 vào (x-y)^2
Có: (53-3)^2 = 50^2 = 2500
Vậy giá trị biểu thức x ( x - y ) + y ( y - x ) tại x= 53; y= 3 là 2500
biến đổi thành :x(x-y)-y(x-y) rồi dổi thành (x-y)(x-y)=(x-y)^2 rồi thay vào là ra thôi
Ta có: x ( x - y) + y ( y -x )
= xx - xy + yy - yx
= xx - yy
= x2 - y2
= (x-y)2
Thay vào: (53-3)2 = 502 = 2500
BÀI 6: Tính giá trị của các biểu thức sau:
a) x 2 + xy + x tại x = 77 và y = 22 b) x(x – y) + y(y – x) tại x= 53 và y =3
a.\(x^2+xy+x=x\left(x+y+1\right)=77\left(77+22+1\right)=77.100=7700\)
b.\(x\left(x-y\right)+y\left(y-x\right)=\left(x-y\right)^2=\left(53-3\right)^2=50^2=2500\)
Đặt A = x2 + xy + x
= x(x + y + 1)
Thay x = 77 ; y = 22 vào biểu thức ta được
A = 77(77 + 22 + 1) = 77.100 = 7700
b) Đặt B = x(x - y) + y(y - x)
= (x - y)2
Thay x = 53 ; y = 3 vào biểu thức ta được
B = (53 - 3)2 = 502 = 2500
có ai biết câu này ko: 85.12,7 + 5.3.12,7
Bài 3:
a) Tính giá trị của biểu thức tại P = x(x - y) + y(x - y) tại x = 5 và y = 4;
b) Tính giá trị của biểu thức tại Q = x(x2 - y) - x2(x + y) + y(x2 - x) tại x = 1/2 và y = -100;
a) \(P=x\left(x-y\right)+y\left(x-y\right)=\left(x-y\right)\left(x+y\right)=x^2-y^2=5^2-4^2=9\)
b) \(Q=x\left(x^2-y\right)-x^2\left(x+y\right)+y\left(x^2-x\right)=x^3-xy-x^3-x^2y+x^2y-xy=0\)
a) tính giá trị của biểu thức: x^2+2y tại x=2, y= –3 b) tính giá trị của biểu thức: x^2+2xy+y^2 tại x=4, y=6 c) tính giá trị của biểu thức: P= x^2-4xy+4y^2 tại x=1 và y= 1/2
a: Khi x=2 và y=-3 thì \(x^2+2y=2^2+2\cdot\left(-3\right)=4-6=-2\)
b: \(A=x^2+2xy+y^2=\left(x+y\right)^2\)
Khi x=4 và y=6 thì \(A=\left(4+6\right)^2=10^2=100\)
c: \(P=x^2-4xy+4y^2=\left(x-2y\right)^2\)
Khi x=1 và y=1/2 thì \(P=\left(1-2\cdot\dfrac{1}{2}\right)^2=\left(1-1\right)^2=0\)
cho biểu thức A = 2x(x + y) - x +7 - y
a)Tính giá trị của biểu thức A tại x = -1 và y = 3
b)Tính giá trị của biểu thức A tại x = -1 và |y| = 3
a) Thay x = -1 và y = 3 vào A, ta được :
A = 2.(-1)[(-1) + 3] - (-1) + 7 - 3
A = -2.2 + 1 + 4
A = -4 + 5
A = 1
b) |y| = 3 => \(\orbr{\begin{cases}y=3\\y=-3\end{cases}}\)
*Thay x =-1 và y = 3 vào biểu thức :
Phần này bạn sẽ làm ý như câu a vậy :33
*Thay x = -1 và y =-3 vào A, ta được :
A = 2.(-1).[(-1) + (-3)] - (-1) + 7 - (-3)
A = -2.(-4) + 1 + 7 + 3
A = 8 + 11
A = 19
tính giá trị biểu thức
a) x2 +xy + x tại x = 77 , y= 22
b) x ( x-y ) + y (y-x) tại x=53 , y=3
a )
Ta có :
\(x^2+xy+x=x\left(x+y+1\right)\)
Thay \(x=77;y=22\)vào b/t , ta được :
\(77\left(77+22+1\right)=77.100=7700\)
Vậy \(x^2+xy+x=7700\)tại \(x=77;y=22\)
b )
Ta có :
\(x\left(x-y\right)+y\left(y-x\right)\)
\(=x\left(x-y\right)-y\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y\right)\)
\(=\left(x-y\right)^2\)
Thay \(x=53;y=3\)vào b/t , ta được :
\(\left(53-3\right)^2=50^2=2500\)
Vậy \(x\left(x-y\right)+y\left(y-x\right)=2500\) tại \(x=53;y=3\)
Tính giá trị của các biểu thức sau :
a) \(x^2+xy+x\) tại \(x=77\) và \(y=22\)
b) \(x\left(x-y\right)+y\left(y-x\right)\) tại \(x=53\) và \(y=3\)
a) \(x^2+xy+x\)
\(\Leftrightarrow x\left(x+y+1\right)\)
Tại x=77 và y=22 có:
\(\Leftrightarrow77\left(77+22+1\right)\)
\(=7700\)
b) \(x\left(x-y\right)+y\left(y-x\right)\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)\)
\(\Leftrightarrow x^2-y^2\)
Tại x=53 và y=3, ta có:
\(53^2-3^2=2800\)
Bài 4: Phân tích biểu thức thành nhân tử rồi tính giá trị biểu thức.
a)x^2+xy+x tại x = 77 ; y = 22
b) x(x – y) + y(y – x) tại x = 53, y = 3
c) x(x – 1) – y(1 – x) tại x = 2001; y = 1999
a.
\(x^2+xy+x=x\left(x+y+1\right)\)
Tại \(x=77;y=22\Rightarrow x\left(x+y+1\right)=77\left(77+22+1\right)=77.100=7700\)
b.
\(x\left(x-y\right)+y\left(y-x\right)=x\left(x-y\right)-y\left(x-y\right)=\left(x-y\right)\left(x-y\right)=\left(x-y\right)^2\)
\(=\left(53-3\right)^2=50^2=2500\)
c.
\(x\left(x-1\right)-y\left(1-x\right)=x\left(x-1\right)+y\left(x-1\right)=\left(x+y\right)\left(x-1\right)\)
\(=\left(2001+1999\right)\left(2001-1\right)=4000.2000=8000000\)
Rút gọn và tính giá trị của biểu thức sau: D= (x-2)^3-(y-3)^2+(x-y)(x^2+xy+y^2)-(x+y)^3 tại x=1; y=1/2