Những câu hỏi liên quan
TT
Xem chi tiết
PB
Xem chi tiết
CT
14 tháng 6 2018 lúc 10:13

Chọn  B

Bình luận (0)
SB
Xem chi tiết
NL
20 tháng 9 2021 lúc 21:14

c.

\(\Leftrightarrow cos\left(x+12^0\right)+cos\left(90^0-78^0+x\right)=1\)

\(\Leftrightarrow2cos\left(x+12^0\right)=1\)

\(\Leftrightarrow cos\left(x+12^0\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+12^0=60^0+k360^0\\x+12^0=-60^0+k360^0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=48^0+k360^0\\x=-72^0+k360^0\end{matrix}\right.\)

2.

Do \(-1\le sin\left(3x-27^0\right)\le1\) nên pt có nghiệm khi:

\(\left\{{}\begin{matrix}2m^2+m\ge-1\\2m^2+m\le1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2m^2+m+1\ge0\left(luôn-đúng\right)\\2m^2+m-1\le0\end{matrix}\right.\)

\(\Rightarrow-1\le m\le\dfrac{1}{2}\)

Bình luận (0)
NL
20 tháng 9 2021 lúc 21:11

a.

\(\Rightarrow\left[{}\begin{matrix}x+15^0=arccos\left(\dfrac{2}{5}\right)+k360^0\\x+15^0=-arccos\left(\dfrac{2}{5}\right)+k360^0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-15^0+arccos\left(\dfrac{2}{5}\right)+k360^0\\x=-15^0-arccos\left(\dfrac{2}{5}\right)+k360^0\end{matrix}\right.\)

b.

\(2x-10^0=arccot\left(4\right)+k180^0\)

\(\Rightarrow x=5^0+\dfrac{1}{2}arccot\left(4\right)+k90^0\)

Bình luận (0)
HP
20 tháng 9 2021 lúc 21:15

2.

Phương trình \(sin\left(3x-27^o\right)=2m^2+m\) có nghiệm khi:

\(2m^2+m\in\left[-1;1\right]\)

\(\Leftrightarrow\left\{{}\begin{matrix}2m^2+m\le1\\2m^2+m\ge-1\end{matrix}\right.\)

\(\Leftrightarrow\left(m+1\right)\left(2m-1\right)\le0\)

\(\Leftrightarrow-1\le m\le\dfrac{1}{2}\)

Bình luận (0)
PT
Xem chi tiết
H24
Xem chi tiết
NT
11 tháng 10 2023 lúc 8:03

loading...  loading...  

Bình luận (0)
DN
Xem chi tiết
AH
28 tháng 6 2021 lúc 18:16

a1.

$\cot (2x+\frac{\pi}{3})=-\sqrt{3}=\cot \frac{-\pi}{6}$

$\Rightarrow 2x+\frac{\pi}{3}=\frac{-\pi}{6}+k\pi$ với $k$ nguyên

$\Leftrightarrow x=\frac{-\pi}{4}+\frac{k}{2}\pi$ với $k$ nguyên

a2. ĐKXĐ:...............

$\cot (3x-10^0)=\frac{1}{\cot 2x}=\tan 2x$

$\Leftrightarrow \cot (3x-\frac{\pi}{18})=\cot (\frac{\pi}{2}-2x)$

$\Rightarrow 3x-\frac{\pi}{18}=\frac{\pi}{2}-2x+k\pi$ với $k$ nguyên

$\Leftrightarrow x=\frac{\pi}{9}+\frac{k}{5}\pi$ với $k$ nguyên.

 

 

Bình luận (0)
AH
28 tháng 6 2021 lúc 18:23

a3. ĐKXĐ:........

$\cot (\frac{\pi}{4}-2x)-\tan x=0$

$\Leftrightarrow \cot (\frac{\pi}{4}-2x)=\tan x=\cot (\frac{\pi}{2}-x)$

$\Rightarrow \frac{\pi}{4}-2x=\frac{\pi}{2}-x+k\pi$ với $k$ nguyên

$\Leftrightarrow x=-\frac{\pi}{4}+k\pi$ với $k$ nguyên.

a4. ĐKXĐ:.....

$\cot (\frac{\pi}{6}+3x)+\tan (x-\frac{\pi}{18})=0$

$\Leftrightarrow \cot (\frac{\pi}{6}+3x)=-\tan (x-\frac{\pi}{18})=\tan (\frac{\pi}{18}-x)$

$=\cot (x+\frac{4\pi}{9})$

$\Rightarrow \frac{\pi}{6}+3x=x+\frac{4\pi}{9}+k\pi$ với $k$ nguyên

$\Rightarrow x=\frac{5}{36}\pi + \frac{k}{2}\pi$ với $k$ nguyên. 

Bình luận (0)
BT
Xem chi tiết
PB
Xem chi tiết
CT
1 tháng 6 2017 lúc 3:36

a) Đ

b) S

c) S

d) Đ

Bình luận (0)
SK
Xem chi tiết
QD
31 tháng 3 2017 lúc 15:41

Bài 5. a) Vì = tan 300 nên

tan (x - 150) = ⇔ tan (x - 150) = tan 300

⇔ x - 150 = 300 + k1800 ⇔ x = 450 + k1800 , (k ∈ Z).

b) Vì -√3 = cot() nên

cot (3x - 1) = -√3 ⇔ cot (3x - 1) = cot()

⇔ 3x - 1 = + kπ ⇔ x =

c) Đặt t = tan x thì cos2x = , phương trình đã cho trở thành

. t = 0 ⇔ t ∈ {0 ; 1 ; -1} .

Vì vậy phương trình đã cho tương đương với

d) sin 3x . cot x = 0 ⇔ .

Với điều kiện sinx # 0, phương trình tương đương với

sin 3x . cot x = 0 ⇔

Với cos x = 0 ⇔ x = + kπ, k ∈ Z thì sin2x = 1 – cos2x = 1 – 0 = 1 => sinx # 0, điều kiện được thỏa mãn.

Với sin 3x = 0 ⇔ 3x = kπ ⇔ x = , (k ∈ Z). Ta còn phải tìm các k nguyên để x = vi phạm điều kiện (để loại bỏ), tức là phải tìm k nguyên sao cho sin = 0, giải phương trình này (với ẩn k nguyên), ta có

sin = 0 ⇔ = lπ, (l ∈ Z) ⇔ k = 3l ⇔ k : 3.

Do đó phương trình đã cho có nghiệm là x = + kπ, (k ∈ Z) và x = (với k nguyên không chia hết cho 3).

Bình luận (0)