tìm m để đồ thị hàm số \(\left(C_m\right):y=x^3-3mx^2+3\left(m^2-1\right)x-m^3+m\) có cực trị đồng thời khoảng cách từ điểm cực đại của đồ thị hàm số O bằng \(\sqrt{2}\) lần khoảng cách từ điểm cực tiểu của đồ thị hàm số đến O ( O là gốc tọa độ )
tìm m để đồ thị hàm số \(\left(C_m\right):y=x^3-3mx^2+3\left(m^2-1\right)x-m^3+m\) có cực trị đồng thời khoảng cách từ điểm cực đại của đồ thị hàm số O bằng \(\sqrt{2}\) lần khoảng cách từ điểm cực tiểu của đồ thị hàm số đến O ( O là gốc tọa độ )
Bài 1: Giải phương trình
a) \(\sqrt{x^2+4x+4}=2\)
b) \(\sqrt{4x-8}-7\sqrt{\dfrac{x-2}{49}}=5\)
Bài 2: Trong mặt phẳng tọa độ Oxy:
a) Vẽ đồ thị (d₁) của hàm số y = \(-\dfrac{1}{2}x+\dfrac{3}{2}\)
b) Gọi A và B là giao điểm của đồ thị (d₁) với các trục tọa độ. Tính diện tích ∆OAB (với O là gốc tọa độ)
Bài 3: Rút gọn
A= \(\dfrac{2\sqrt{x}-4}{3\sqrt{x}-4}+\dfrac{x+22\sqrt{x}-32}{3x-10\sqrt{x}+8}+\dfrac{4+2\sqrt{x}}{\sqrt{x}-2}\:\left(x\:\ge0;\:x\ne4;\:x\ne\dfrac{16}{9}\right)\)
Bài 3:
\(A=\dfrac{2\sqrt{x}-4}{3\sqrt{x}-4}+\dfrac{x+22\sqrt{x}-32}{3x-10\sqrt{x}+8}+\dfrac{4+2\sqrt{x}}{\sqrt{x}-2}\)
\(=\dfrac{2\sqrt{x}-4}{3\sqrt{x}-4}+\dfrac{x+22\sqrt{x}-32}{\left(3\sqrt{x}-4\right)\left(\sqrt{x}-2\right)}+\dfrac{2\sqrt{x}+4}{\sqrt{x}-2}\)
\(=\dfrac{\left(2\sqrt{x}-4\right)\left(\sqrt{x}-2\right)+x+22\sqrt{x}-32+\left(2\sqrt{x}+4\right)\left(3\sqrt{x}-4\right)}{\left(3\sqrt{x}-4\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{2x-8\sqrt{x}+8+x+22\sqrt{x}-32+6x-8\sqrt{x}+12\sqrt{x}-16}{\left(3\sqrt{x}-4\right)\cdot\left(\sqrt{x}-2\right)}\)
\(=\dfrac{9x+18\sqrt{x}-40}{\left(3\sqrt{x}-4\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{9x-12\sqrt{x}+30\sqrt{x}-40}{\left(3\sqrt{x}-4\right)\left(\sqrt{x}-2\right)}=\dfrac{\left(3\sqrt{x}-4\right)\left(3\sqrt{x}+10\right)}{\left(3\sqrt{x}-4\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{3\sqrt{x}+10}{\sqrt{x}-2}\)
Bài 2:
b: Tọa độ A là:
\(\left\{{}\begin{matrix}y=0\\-\dfrac{1}{2}x+\dfrac{3}{2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\3-x=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=3\\y=0\end{matrix}\right.\)
=>A(3;0)
Tọa độ B là:
\(\left\{{}\begin{matrix}x=0\\y=-\dfrac{1}{2}x+\dfrac{3}{2}=-\dfrac{1}{2}\cdot0+\dfrac{3}{2}=1,5\end{matrix}\right.\)
=>B(0;1,5)
\(OA=\sqrt{\left(3-0\right)^2+\left(0-0\right)^2}=\sqrt{3^2+0^2}=3\)
\(OB=\sqrt{\left(0-0\right)^2+\left(1,5-0\right)^2}=1,5\)
Ox\(\perp\)Oy nên OA\(\perp\)OB
=>ΔOAB vuông tại O
=>\(S_{OAB}=\dfrac{1}{2}\cdot OA\cdot OB=2.25\)
Bài 1:
a: ĐKXĐ: \(x\in R\)
\(\sqrt{x^2+4x+4}=2\)
=>\(\sqrt{\left(x+2\right)^2}=2\)
=>|x+2|=2
=>\(\left[{}\begin{matrix}x+2=2\\x+2=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
b: ĐKXĐ: x>=2
\(\sqrt{4x-8}-7\cdot\sqrt{\dfrac{x-2}{49}}=5\)
=>\(2\sqrt{x-2}-7\cdot\dfrac{\sqrt{x-2}}{7}=5\)
=>\(\sqrt{x-2}=5\)
=>x-2=25
=>x=27(nhận)
cho hàm số y=1/4x^2 có đồ thị là (p) và hàm số y=x+m có đồ thị là (d)
a) Vẽ đồ thị (p) của hàm số y=1/4x^2
b) Tìm giá trị của m để (d) tiếp xúc với (p). Tìm tọa độ tiếp điểm
a) vẽ bạn tự vẽ nha
b) Xét pt hoành độ giao điểm chung của (d) và (P) ta có:
\(\frac{1}{4}x^2=x+m\)
\(\Leftrightarrow x^2-4x-4m=0\left(1\right)\)
\(\Delta^,=4+4m\)
Để (d) tiếp xúc với (P) \(\Leftrightarrow\Delta^,=0\)
\(\Leftrightarrow4+4m=0\)
\(\Leftrightarrow m=-1\)
Thay m=-1 vào pt (1) ta được :
\(x^2-4x+4=0\)
\(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x=2\)
\(\Rightarrow y=\frac{1}{4}.2^2=1\)
Gọi tọa độ tiếp điểm của (d) tiếp xúc với (P) là A(x,y)
=> tọa độ tiếp điểm là \(A\left(2;1\right)\)
Cho hàm số y=3x
a) Vẽ đồ thị hàm số
b) Điểm A thuộc đồ thị hàm số có khoảng cách tới gốc tọa độ là \(2\sqrt{10}\). Xác định tọa độ của A.
Lời giải:
a. Hình vẽ:
b. Vì điểm $A$ thuộc đths nên $A$ có tọa độ $(a,3a)$
$OA=\sqrt{a^2+(3a)^2}=2\sqrt{10}$
$\sqrt{10a^2}=2\sqrt{10}$
$10a^2=400$
$a=\pm 2$
Vậy tọa độ điểm A là $(2,6)$ hoặc $(-2,-6)$
tìm m để đồ thị hàm số \(\left(C_m\right):y=x^3-3mx^2+3\left(m^2-1\right)x-m^3+m\) có cực trị đồng thời khoảng cách từ điểm cực đại của đồ thị hàm số O bằng √2 lần khoảng cách từ điểm cực tiểu của đồ thị hàm số đến O ( O là gốc tọa độ )
Lời giải:
$y'=3x^2-6mx+3(m^2-1)=0$
$\Leftrightarrow x^2-2mx+m^2-1=0$
$\Leftrightarrow x=m+1$ hoặc $x=m-1$
Với $x=m+1$ thì $y=-2m-2$. Ta có điểm cực trị $(m+1, -2m-2)$
Với $x=m-1$ thì $y=2-2m$. Ta có điểm cực trị $m-1, 2-2m$
$f''(m+1)=6>0$ nên $A(m+1, -2m-2)$ là điểm cực tiểu
$f''(m-1)=-6< 0$ nên $B(m-1,2-2m)$ là điểm cực đại
$BO=\sqrt{2}AO$
$\Leftrightarrow BO^2=2AO^2$
$\Leftrightarrow (m-1)^2+(2-2m)^2=2(m+1)^2+2(-2m-2)^2$
$\Leftrightarrow m=-3\pm 2\sqrt{2}$
Cho hàm số : \(y=x^3-3mx^2+3\left(m^2-1\right)x-m^3+m\left(1\right)\)
Tìm m để hàm số (1) có cực trị đồng thời khoảng cách từ điểm cực đại của đồ thị hàm số đến góc tọa độ O bằng \(\sqrt{2}\) lần khoảng cách từ cực tiểu của đồ thị hàm số đến góc tọa độ O
Ta có : \(y'=3x^2-6mx+3\left(m^2-1\right)\)
Để hàm số có cực trị thì phương trình \(y'=0\) có 2 nghiệm phân biệt
\(\Leftrightarrow x^2-2mx+m^2-1=0\) có 2 nghiệm phân biệt
\(\Leftrightarrow\Delta=1>0\) với mọi m
Cực đại của đồ thị hàm số là A(m-1;2-2m) và cực tiểu của đồ thị hàm số là B (m+1; -2-2m)
Theo giả thiết ta có :
\(OA=\sqrt{2}OB\Leftrightarrow m^2+6m+1\Leftrightarrow\begin{cases}m=-3+2\sqrt{2}\\m=-3-2\sqrt{2}\end{cases}\)
Vậy có 2 giá trị m là \(\begin{cases}m=-3+2\sqrt{2}\\m=-3-2\sqrt{2}\end{cases}\)
Cho hàm số y = \(\sqrt{3-m}\left(x+5\right)\) là hàm số bậc nhất khi nào ?
Trên cùng một mặt phẳng Oxy, đồ thị của hàm số y = \(\dfrac{1}{2}x-2\) và y = \(\dfrac{3}{2}\)x - 2 có tọa độ là ?
Hàm số \(y=\sqrt{3-m}\left(x+5\right)\) là hàm số bậc nhất khi \(\sqrt{3-m}\ne0\)
\(\Leftrightarrow3-m\ne0\)
\(\Leftrightarrow m\ne3\)
Tọa độ giao điểm của hai đồ thị hàm số \(y=\dfrac{1}{2}x-2\) và \(y=\dfrac{3}{2}x-2\) là nghiệm của hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{2}x-2=\dfrac{3}{2}x-2\\y=\dfrac{1}{2}x-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}x-2-\dfrac{3}{2}x+2=0\\y=\dfrac{1}{2}x-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-x=0\\y=\dfrac{1}{2}x-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{2}\cdot0-2=-2\end{matrix}\right.\)
Vậy: Hai đồ thị hàm số \(y=\dfrac{1}{2}x-2\) và \(y=\dfrac{3}{2}x-2\) có tọa độ giao điểm là (0;-2)
\(y=\sqrt{3-m}.\left(x+5\right)\) là hàm số bậc nhất \(\Leftrightarrow\sqrt{3-m}\ne0\Leftrightarrow m\ne3\)
Lập PT hoành độ ta có:
\(\dfrac{1}{2}x-2=\dfrac{3}{2}x-2\)
\(\Leftrightarrow x=0\)
\(\Rightarrow y=\dfrac{1}{2}.0-2=-2\)
=> Tọa độ (0;-2)
Câu 2: Cho hàm số \(y=f\left(x\right)=\dfrac{1}{2}x^2\) có đồ thị là (P)
a) Tính f(-2)
b) Vẽ đồ thị (P) trên mặt phẳng với hệ trục tọa độ Oxy
c) Cho hàm số y = 2x + 6 (d). Tìm tọa độ giao điểm của hai đồ thị (P) và (d)
Câu 3: Cho x1,x2 là hai nghiệm của phương trình x2 - 2x - 1 = 0
Tính giá trị của biểu thức P = (x1)3 + (x2)3
Câu 2:
c) Phương trình hoành độ giao điểm của (P) và (d) là:
\(\dfrac{1}{2}x^2=2x+6\)
\(\Leftrightarrow\dfrac{1}{2}x^2-2x-6=0\)
\(\Leftrightarrow x^2-4x-12=0\)
\(\Leftrightarrow x^2-4x+4=16\)
\(\Leftrightarrow\left(x-2\right)^2=16\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=4\\x-2=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-2\end{matrix}\right.\)
Thay x=6 vào (P), ta được:
\(y=\dfrac{1}{2}\cdot6^2=18\)
Thay x=-2 vào (P), ta được:
\(y=\dfrac{1}{2}\cdot\left(-2\right)^2=\dfrac{1}{2}\cdot4=2\)
Vậy: Tọa độ giao điểm của (P) và (d) là (6;18) và (-2;2)
Câu 3:
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-2\right)}{1}=2\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{-1}{1}=-1\end{matrix}\right.\)
Ta có: \(P=x_1^3+x_2^3\)
\(=\left(x_1+x_2\right)^3-3\cdot x_1x_2\left(x_1+x_2\right)\)
\(=2^3-3\cdot\left(-1\right)\cdot2\)
\(=8+3\cdot2\)
\(=8+6=14\)
Vậy: P=14
a, \(f\left(-2\right)=\dfrac{1}{2}.\left(-2\right)^2=\dfrac{1}{2}.4=2\)
b,
c, Tọa độ giao điểm của 2 đồ thị (P) và (d) thỏa mãn phương trình
\(2x+6=\dfrac{1}{2}x^2\Leftrightarrow x=6;x=-2\)
TH1 : Thay x = 6 vào f(x) ta được : \(\dfrac{1}{2}.6^2=18\)
TH2 : Thay x = -2 vào f(x) ta được : \(\dfrac{1}{2}.\left(-2\right)^2=2\)
Vậy tọa độ giao điểm của (P) và (d) là \(\left(6;18\right);\left(-2;2\right)\)
Điểm cực trị của đồ thị hàm số y = 1 + 4 x - x 4 có tọa độ là
A. (1;2)
B. (0;1)
C. (2;3)
D. (3;4)
Chọn A
Ta có: y ' = 2 - 2 x 3 1 + 4 x - x 4 . y ' = 0
Cho hàm số y=-2/3x a) ve đồ thị hàm số b) xác định tọa độ điểm có hoành độ là 5 và điểm có tung độ bằng -2/7 thuộc đồ thị hàm số c) Điểm C(-1;2/3);D(-1;-2/3) điểm nào thuộc đồ thị hàm số
b: \(\left(5;-\dfrac{10}{3}\right);\left(\dfrac{3}{7};-\dfrac{2}{7}\right)\)