Ôn thi vào 10

TN

Câu 2: Cho hàm số \(y=f\left(x\right)=\dfrac{1}{2}x^2\) có đồ thị là (P)

a) Tính f(-2)

b) Vẽ đồ thị (P) trên mặt phẳng với hệ trục tọa độ Oxy

c) Cho hàm số y = 2x + 6 (d). Tìm tọa độ giao điểm của hai đồ thị (P) và (d)

Câu 3: Cho x1,x2 là hai nghiệm của phương trình x2 - 2x - 1 = 0

Tính giá trị của biểu thức P = (x1)3 + (x2)3

NT
15 tháng 4 2021 lúc 22:01

Câu 2: 

c) Phương trình hoành độ giao điểm của (P) và (d) là:

\(\dfrac{1}{2}x^2=2x+6\)

\(\Leftrightarrow\dfrac{1}{2}x^2-2x-6=0\)

\(\Leftrightarrow x^2-4x-12=0\)

\(\Leftrightarrow x^2-4x+4=16\)

\(\Leftrightarrow\left(x-2\right)^2=16\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=4\\x-2=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-2\end{matrix}\right.\)

Thay x=6 vào (P), ta được:

\(y=\dfrac{1}{2}\cdot6^2=18\)

Thay x=-2 vào (P), ta được:

\(y=\dfrac{1}{2}\cdot\left(-2\right)^2=\dfrac{1}{2}\cdot4=2\)

Vậy: Tọa độ giao điểm của (P) và (d) là (6;18) và (-2;2)

Bình luận (0)
NT
15 tháng 4 2021 lúc 22:07

Câu 3: 

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-2\right)}{1}=2\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{-1}{1}=-1\end{matrix}\right.\)

Ta có: \(P=x_1^3+x_2^3\)

\(=\left(x_1+x_2\right)^3-3\cdot x_1x_2\left(x_1+x_2\right)\)

\(=2^3-3\cdot\left(-1\right)\cdot2\)

\(=8+3\cdot2\)

\(=8+6=14\)

Vậy: P=14

Bình luận (0)
NT
15 tháng 4 2021 lúc 22:13

a, \(f\left(-2\right)=\dfrac{1}{2}.\left(-2\right)^2=\dfrac{1}{2}.4=2\)

b,  O x y -2 4 y=1/2x^2

c, Tọa độ giao điểm của 2 đồ thị (P) và (d) thỏa mãn phương trình 

\(2x+6=\dfrac{1}{2}x^2\Leftrightarrow x=6;x=-2\)

TH1 : Thay x = 6 vào f(x) ta được : \(\dfrac{1}{2}.6^2=18\)

TH2 : Thay x = -2 vào f(x) ta được : \(\dfrac{1}{2}.\left(-2\right)^2=2\)

Vậy tọa độ giao điểm của (P) và (d) là \(\left(6;18\right);\left(-2;2\right)\)

Bình luận (0)

Các câu hỏi tương tự
TN
Xem chi tiết
TN
Xem chi tiết
DB
Xem chi tiết
PT
Xem chi tiết
DT
Xem chi tiết
TN
Xem chi tiết
TD
Xem chi tiết
TN
Xem chi tiết
HN
Xem chi tiết