Những câu hỏi liên quan
PB
Xem chi tiết
CT
22 tháng 1 2019 lúc 2:01

Bình luận (0)
PB
Xem chi tiết
CT
21 tháng 8 2017 lúc 16:59

Đáp án đúng : C

Bình luận (0)
PB
Xem chi tiết
CT
5 tháng 11 2018 lúc 14:50

Ta có:

lim x → 0 − f x = lim x → 0 − x + m = m ;   lim x → 0 + f x = lim x → 0 + x 2 + 1 = 1

Hàm số có giới hạn tại  x = 0 ⇔ lim x → 0 − f x = lim x → 0 + f x ⇔ m = 1

Chọn đáp án D

Bình luận (0)
SB
Xem chi tiết
NL
8 tháng 3 2022 lúc 17:47

Để giới hạn đã cho hữu hạn

\(\Rightarrow\sqrt{x^2+mx-m-3}-x=0\) có nghiệm \(x=4\)

\(\Rightarrow\sqrt{16+4m-m-3}-4=0\)

\(\Rightarrow\sqrt{3m+13}=4\Rightarrow m=1\)

Khi đó:

 \(\lim\limits_{x\rightarrow4}\dfrac{\sqrt{x^2+x-4}-x}{x^2-5x+4}=\lim\limits_{x\rightarrow4}\dfrac{x-4}{\left(x-1\right)\left(x-4\right)\left(\sqrt{x^2+x-4}+x\right)}\)

\(=\lim\limits_{x\rightarrow4}\dfrac{1}{\left(x-1\right)\left(\sqrt{x^2+x-4}+x\right)}=\dfrac{1}{3\left(\sqrt{4^2+4-4}+4\right)}=\dfrac{1}{24}\)

Bình luận (0)
PB
Xem chi tiết
CT
13 tháng 2 2019 lúc 9:59

Bình luận (0)
PB
Xem chi tiết
CT
12 tháng 2 2019 lúc 9:50

Đáp án đúng : D

Bình luận (0)
TC
Xem chi tiết
HH
4 tháng 4 2021 lúc 0:31

Xet \(m\ne-3\)

\(=\lim\limits_{x\rightarrow-\infty}x\left(\sqrt[3]{1}+\sqrt{4}+m\right)=x\left(3+m\right)\)

\(=\left[{}\begin{matrix}-\infty\left(m>-3\right)\\+\infty\left(m< -3\right)\end{matrix}\right.\)

Xet \(m=-3\)

\(=\lim\limits_{x\rightarrow-\infty}\left(\sqrt[3]{x^3+2x^2+1}-x-2x-\sqrt{4x^2+2x+3}\right)\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{x^3+2x^2+1-x^3}{\sqrt[3]{\left(x^3+2x^2+1\right)^2}+x\sqrt[3]{x^3+2x^2+1}+x^2}-\lim\limits_{x\rightarrow-\infty}\dfrac{4x^2-4x^2-2x-3}{2x-\sqrt{4x^2+2x+3}}\)

\(=\dfrac{2}{3}+\dfrac{1}{2}=\dfrac{7}{6}\)

Bình luận (2)
PB
Xem chi tiết
CT
26 tháng 5 2018 lúc 10:34

Ta có:

lim x → − 1 − h x = lim x → − 1 − x 3 + 1 x + 1 = lim x → − 1 − x 2 − x + 1 = 3 lim x → − 1 + h x = lim x → − 1 + m x 2 − x + m 2 = m + 1 + ​ m 2

Hàm số có giới hạn tại x= -1 khi và chỉ khi  lim x → − 1 − h x = lim x → − 1 + h x

3 = m + 1 + ​  m 2 ⇔ m 2 + m − 2 = 0 ⇔ m = 1 m = − 2

Chọn đáp án C

Bình luận (0)
H24
Xem chi tiết
NT
15 tháng 11 2023 lúc 22:20

\(\lim\limits\left(\sqrt{n^2+2n}-\sqrt{n^2-2n}\right)\)

\(=\lim\limits\dfrac{n^2+2n-n^2+2n}{\sqrt{n^2+2n}+\sqrt{n^2-2n}}\)

\(=\lim\limits\dfrac{4n}{\sqrt{n^2+2n}+\sqrt{n^2-2n}}\)

\(=\lim\limits\dfrac{4}{\sqrt{1+\dfrac{2}{n}}+\sqrt{1-\dfrac{2}{n}}}\)

\(=\dfrac{4}{1+1}=\dfrac{4}{2}=2\)

Bình luận (1)