Chương 4: GIỚI HẠN

TC

Tùy theo giá trị của tham số m, tính giới hạn:


\(\lim\limits_{x\rightarrow-\infty}\left(\sqrt[3]{x^3+2x^2+1}-\sqrt{4x^2+2x+3}+mx\right)\)

HH
4 tháng 4 2021 lúc 0:31

Xet \(m\ne-3\)

\(=\lim\limits_{x\rightarrow-\infty}x\left(\sqrt[3]{1}+\sqrt{4}+m\right)=x\left(3+m\right)\)

\(=\left[{}\begin{matrix}-\infty\left(m>-3\right)\\+\infty\left(m< -3\right)\end{matrix}\right.\)

Xet \(m=-3\)

\(=\lim\limits_{x\rightarrow-\infty}\left(\sqrt[3]{x^3+2x^2+1}-x-2x-\sqrt{4x^2+2x+3}\right)\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{x^3+2x^2+1-x^3}{\sqrt[3]{\left(x^3+2x^2+1\right)^2}+x\sqrt[3]{x^3+2x^2+1}+x^2}-\lim\limits_{x\rightarrow-\infty}\dfrac{4x^2-4x^2-2x-3}{2x-\sqrt{4x^2+2x+3}}\)

\(=\dfrac{2}{3}+\dfrac{1}{2}=\dfrac{7}{6}\)

Bình luận (2)

Các câu hỏi tương tự
TL
Xem chi tiết
TL
Xem chi tiết
TT
Xem chi tiết
TL
Xem chi tiết
HA
Xem chi tiết
AN
Xem chi tiết
HA
Xem chi tiết
NS
Xem chi tiết
HN
Xem chi tiết