Cho các số thực a, b, c thỏa mãn a log 3 7 2 = 27 ; b log 7 11 2 = 49 ; c log 11 25 2 = 11 . Tính giá trị của biểu thức T = a log 3 7 2 + b log 7 11 2 + c log 11 25 2
A. T = 496
B. T = 649
C. T = 469
D. T = 694
Cho a,b là các số thực thỏa mãn log 2 . log 2 a - log b = 2 . Hỏi a,b thỏa mãn hệ thức nào dưới đây?
A. a = 100b
B. a = 100 - b
C. a = =100 + b
D. a = 100 b
Cho a, b là các số thực dương thỏa mãn log 2 a + log 2 b = 0.
Cho các số thực dương a,b thỏa mãn log a = x , log b = y . Tính P = log ( a 2 b 3 )
Đề bài
Cho hai số thực dương a, b thỏa mãn \({a^3}{b^2} = 100\). Tính giá trị của biểu thức \(P = 3\log a + 2\log b\)
\(P=loga^3+logb^2=log\left(a^3b^2\right)=log\left(100\right)=10\)
Cho các số thực dương a,b thỏa mãn log a = x , log b = y . Tính l o g ( a 2 b 3 ) ?
A. 6xy
B. x 3 y 3
C. x 3 + y 3
D. 2x+3y
Giả sử a,b là các số thực sao cho x 3 + y 3 = a 10 3 x + b 10 2 x đúng với mọi các số thực dương x, y, z thỏa mãn log ( x + y ) = z và log ( x 2 + y 2 ) = z + 1 . Giá trị của a+b bằng
A. -31/2
B. -25/2
C. 31/2
D. 29/2
Giả sử a, b là các số thực sao cho x3 + y3 = a.103x + b.102x đúng với mọi số thực dương x, y, z thỏa mãn log (x + y) = z và log(x2 + y2) = z + 1. Giá trị của a+b bằng:
A. - 31 2
B. - 25 2
C. 31 2
D. 29 2
Đáp án D.
Ta có
Khi đó
Đồng nhất hệ số, ta được
Cho a,b,c là các số thực dương thỏa mãn a log 5 2 = 4 , b log 4 6 = 1 , log , c log 7 3 = 49 Tính giá trị của biểu thức T = a log 2 2 5 + b log 4 2 6 + 3 c log 7 2 3
A. T=126
B. T = 5 + 2 3
C. T=88
D. T = 3 - 2 3
Giả sử a,b là các số thực sao cho x 3 + y 3 = a . 10 3 x + b . 10 2 x đúng với mọi số thực dương x,y,z thỏa mãn log(x+y)=z và log x 2 + y 2 = z + 1 Giá trị của a+b bằng:
A. -31/2
B. -25/2
C. 31/2
D. 29/2
Có bao nhiêu số nguyên a (a≥ 2) sao cho tồn tại số thực x thỏa mãn: (alog(x) + 2)log(a) = x - 2 ?
Trắc nghiệm rất lẹ (chắc vài giây), còn tự luận hơi lâu:
Hiển nhiên chỉ cần xét với \(x>2\) (vì vế trái luôn dương). Chú ý rằng \(a^{logx}=x^{loga}\)
Với \(a=10\Rightarrow x+2=x-2\) vô nghiệm (ktm)
- Trắc nghiệm: với \(a>10\Rightarrow\left(x^{loga}+2\right)^{loga}>x+2>x-2\) pt vô nghiệm
Với \(a< 10\) chọn 2 giá trị a=2 và a=9 để kiểm tra hàm \(\left(x^{loga}+2\right)^{loga}-x+2\) thấy đều đổi dấu ở chế độ table \(\Rightarrow a=\left\{2;3;...;9\right\}\) có 8 giá trị nguyên
- Tự luận: xét với \(x>2\), đặt \(loga=m>0\) pt trở thành: \(\left(x^m+2\right)^m=x-2\)
Đặt \(x^m+2=t\Rightarrow\left\{{}\begin{matrix}x^m=t-2\\t^m=x-2\end{matrix}\right.\)
\(\Rightarrow x^m-t^m=t-x\Rightarrow x^m+x=t^m+t\) (1)
Xét hàm \(f\left(x\right)=x^m+x\Rightarrow f'\left(x\right)=mx^{m-1}+1>0\Rightarrow f\left(x\right)\) đồng biến
Do đó \(\left(1\right)\Rightarrow x=t\Rightarrow x^m=x-2\Rightarrow x^m-x+2=0\)
Xét hàm \(f\left(x\right)=x^m-x+2\)
- Với \(m>1\Rightarrow f'\left(x\right)=m.x^{m-1}-1>1-1\ge0\Rightarrow f\left(x\right)\) đồng biến
\(\Rightarrow f\left(x\right)>f\left(2\right)=2^m-2+2=2^m>0\Rightarrow f\left(x\right)\) vô nghiệm (ktm)
- Với \(0< m< 1\) ta có:
\(f\left(2\right)=2^m>0\)
\(\lim\limits_{x\rightarrow+\infty}\left(x^m-x+2\right)=\lim\limits_{x\rightarrow+\infty}x\left(x^{m-1}-1+\dfrac{2}{x}\right)\)
Chú ý rằng \(m< 1\Rightarrow x^{m-1}=\dfrac{1}{x^{1-m}}\rightarrow0\) khi \(x\rightarrow+\infty\Rightarrow x^{m-1}-1+\dfrac{2}{x}\rightarrow-1\Rightarrow\lim\limits_{x\rightarrow+\infty}\left(x^m-x+2\right)=-\infty\)
\(\Rightarrow f\left(2\right).\lim\limits_{x\rightarrow+\infty}f\left(x\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thỏa mãn \(x>2\)
Vậy \(0< m< 1\) hay \(0< loga< 1\Rightarrow2\le a< 10\Rightarrow a=\left\{2;3;...;9\right\}\)