Chứng minh các đẳng thức sau:
a) 3 a 2 − 10 a + 3 2 ( a − 3 ) = 3 2 a − 1 2 với a ≠ 3;
b) b 2 + 3 b + 9 b 3 − 27 = b − 2 b 2 − 5 b + 6 với b ≠ 2 và b ≠ 3.
Chứng minh các hằng đẳng thức sau:
a) (a2+b2)(c2+d2)=(ac+bd)2+(ad-bc)2
b) (a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)
\(a,VT=\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+b^2c^2+a^2d^2+b^2d^2\)
\(VP=\left(ac+bd\right)^2+\left(ad-bc\right)^2=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2=a^2c^2+b^2c^2+a^2d^2+b^2d^2\)
\(\Rightarrow VT=a^2c^2+b^2c^2+a^2d^2+b^2d^2=VP\left(đpcm\right)\)
b, Tham khảo:Chứng minh hằng đẳng thức:(a+b+c)3= a3 + b3 + c3 + 3(a+b)(b+c)(c+a) - Hoc24
Chứng minh các hằng đẳng thức sau:
a) (a - b)^2 = (a + b)^2 - 4ab
b) (x + y)^2 + (x - y)^2 = 2(x^2 + y^2)
a) Ta có:
\(VT=\left(a-b\right)^2\)
\(=a^2-2\cdot a\cdot b+b^2\)
\(=a^2-2ab+b^2\)
\(=a^2-4ab+2ab+b^2\)
\(=\left(a^2+2ab+b^2\right)-4ab\)
\(=\left(a+b\right)^2-4ab=VP\)
⇒ Đpcm
b) Ta có:
\(VT=\left(x+y\right)^2+\left(x-y\right)^2\)
\(=x^2+2\cdot x\cdot y+y^2+x^2-2\cdot x\cdot y+y^2\)
\(=x^2+2xy+y^2+x^2-2xy+y^2\)
\(=\left(x^2+x^2\right)+\left(2xy-2xy\right)+\left(y^2+y^2\right)\)
\(=2x^2+0+2y^2\)
\(=2x^2+2y^2\)
\(=2\left(x^2+y^2\right)=VP\)
⇒ Đpcm
a: (a-b)^2
=a^2-2ab+b^2
=a^2+2ab+b^2-4ab
=(a+b)^2-4ab
b: (x+y)^2+(x-y)^2
=x^2+2xy+y^2+x^2-2xy+y^2
=2x^2+2y^2
=2(x^2+y^2)
chứng minh các bất đẳng thức sau:
a)\(\left(\dfrac{a+b}{2}\right)^2>=ab\) với mọi a,b
b)\(a^2+b^2+c^2>ab+bc+ca\)
a, \(\dfrac{a^2+2ab+b^2}{4}\ge ab\)
\(\Leftrightarrow\)a^2+2ab+b^2>=4ab
\(\Leftrightarrow\)a^2-2ab+b^2>=0
\(\Leftrightarrow\)(a-b)^2>=0 (luôn đúng)
b,\(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
\(a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0\)
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) luôn đúng
Chứng minh các đẳng thức sau:
a) \(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right).\dfrac{1}{\sqrt{6}}=-1,5\)
a: Ta có: \(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right)\cdot\dfrac{1}{\sqrt{6}}\)
\(=\left(\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}-2\sqrt{6}\right)\cdot\dfrac{1}{\sqrt{6}}\)
\(=\left(\dfrac{\sqrt{6}}{2}-\dfrac{4\sqrt{6}}{2}\right)\cdot\dfrac{1}{\sqrt{6}}\)
\(=\dfrac{-3}{2}\)
Chứng minh các đẳng thức sau:
a.\(\dfrac{3a^2-10a+3}{2\left(a-3\right)}=\dfrac{3}{2}a-\dfrac{1}{2}\)với a≠3
b.\(\dfrac{b^2+3b+9}{b^3-27}=\dfrac{b-2}{b^2-5b+6}với\) b≠2 và b≠3
giúp mik với mik đang cần gấp
a) Ta có: \(\dfrac{3a^2-10a+3}{2\left(a-3\right)}\)
\(=\dfrac{3a^2-9a-a+3}{2\left(a-3\right)}\)
\(=\dfrac{3a\left(a-3\right)-\left(a-3\right)}{2\left(a-3\right)}\)
\(=\dfrac{\left(a-3\right)\left(3a-1\right)}{2\left(a-3\right)}\)
\(=\dfrac{3a-1}{2}\)
\(=\dfrac{3}{2}a-\dfrac{1}{2}\)(đpcm)
b) Ta có: \(\dfrac{b^2+3b+9}{b^3-27}\)\(=\dfrac{b^2+3b+9}{\left(b-3\right)\left(b^2+3b+9\right)}\)
\(=\dfrac{1}{b-3}\)
\(=\dfrac{b-2}{\left(b-3\right)\left(b-2\right)}\)
\(=\dfrac{b-2}{b^2-5b+6}\)(đpcm)
Cho góc bất kì α. Chứng minh các đẳng thức sau:
a) (sinα+cosα)2=1+sin2α;
b) cos4α−sin4α=cos2α.
a: (sina+cosa)^2
=sin^2a+cos^2a+2*sina*cosa
=1+sin2a
b: \(cos^4a-sin^4a=\left(cos^2a-sin^2a\right)\left(cos^2a+sin^2a\right)\)
\(=cos^2a-sin^2a=cos2a\)
Bài 2: Chứng minh các đẳng thức sau:
a) (x+a)(x+b) = x2+(a+b)x+ ab
b) (x-a)(x-b) = x2-(a+b)x+ ab
c) (x- a)(x+b) = x2-(a-b)x –ab
d) (ax+b)(cx+d) = acx2+(bc+ad)x + bd
Bài 1: Khai triển các hằng đẳng thức sau:
a, (3x-5y)2
b, (2x+7y)2
c, 4x2-49
d, (2x+3)3
e, (2x-5)3
f, (2x+3y)3
g, (3x-2y)3
Bài 2: Khai triển các hằng đẳng thức sau:
a, (a+b+c)2
b, (a-b+c)2
c, (a+b-c)2
d, (a-b-c)2
Bài 3: Điền đơn thức thích hợp vào ô trống:
a, 8x3+❏+❏+27y3=(❏+❏)3
b, 8x3+12x2.y+❏+❏=(❏+❏)3
c, x3-❏+❏-❏=(❏-2y)3
Bài 4: So sánh:
a, 2003.2005 và 20042
b, 716-1 và 8 ( 78+11) (74+1) (72+1)
Bài 5: Đưa về hiệu hai bình:
a, (2x-5) (2x+5)
b, (3x-5y) (3x+5y)
c, (3x+7y) (3x-7y)
d, (2x-1.2x+1)
Mọi người giúp mik giải gấp bài này nha. Cảm ơn nhiều ạ
5:
a: (2x-5)(2x+5)=4x^2-25
b: (3x-5y)(3x+5y)=9x^2-25y^2
c: (3x+7y)(3x-7y)=9x^2-49y^2
d: (2x-1)(2x+1)=4x^2-1
4:
a: 2003*2005=(2004-1)(2004+1)=2004^2-1<2004^2
b: 8(7^2+1)(7^4+1)(7^8+1)
=1/6*(7-1)(7+1)(7^2+1)(7^4+1)(7^8+1)
=1/6(7^2-1)(7^2+1)(7^4+1)(7^8+1)
=1/6(7^16-1)<7^16-1
5:
a: (2x-5)(2x+5)=4x^2-25
b: (3x-5y)(3x+5y)=9x^2-25y^2
c: (3x+7y)(3x-7y)=9x^2-49y^2
d: (2x-1)(2x+1)=4x^2-1
mik chỉ biết bài 5 thôi !
10. Chứng minh các bất đẳng thức :
a) (a + b)2 ≤ 2(a2 + b2)
b) (a + b + c)2 ≤ 3(a2 + b2 + c2)
10. a) Ta có : (a + b)2 + (a – b)2 = 2(a2 + b2). Do (a – b)\(^2\) ≥ 0, nên (a + b)\(^2\) ≤ 2(a2 + b2).
b) Xét : (a + b + c)\(^2\) + (a – b)\(^2\) + (a – c)\(^2\) + (b – c)\(^2\)
. Khai triển và rút gọn, ta được : 3(a\(^2\) + b\(^2\) + c\(^2\)).
Vậy : (a + b + c)\(^2\) ≤ 3( a\(^2\) + b\(^2\) + c\(^2\)).
Cách khác : Biến đổi tương đương
a, \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
\(\Leftrightarrow a^2+2ab+b^2\le2a^2+2b^2\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)luôn đúng
b, \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc\le3a^2+3b^2+3c^2\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(Luôn đúng)
1.(a+b+c)(a^2+b^2+c^2-ab-bc-ca)= a^3-b^3+c^3-3abc
2. (3a+2b-1)(a+5)-2b(a-2)=(3a+5)(a+3)+2(7b-10)
chứng minh các đẳng thức
1) a³ + b³ + c³ - 3abc
=(a + b)(a² - ab + b²) + c³ - 3abc
=(a + b)(a² - ab + b²) + c(a² - ab + b²) - 2abc - ca² - cb²
=(a + b + c)(a² - ab + b²) - (abc + b²c + bc² + ac² + abc + c²a) + c³ + ac² + bc²
=(a + b = c)(a² - ab + b²) - (a + b + c)(bc + ca) + c²(a + b + c)
=(a + b + c)(a² + b² + c² - ab - bc - ca)
2) \(\left(3a+2b-1\right)\left(a+5\right)-2b\left(a-2\right)=\left(3a+5\right)\left(a-3\right)+2\left(7b-10\right)\left(1\right)\)
\(\Leftrightarrow3a^2+15a+2ab+10b-a-5-2ab+4b=3a^2+14a+15+14b-10\)
\(\Leftrightarrow3a^2+14a+14b-5=3a^2+14a+14b-5\)( đúng)
\(\Rightarrow\left(1\right)\) đúng (đpcm)
1) \(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc-3ab\right)\)
\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\left(đpcm\right)\)