Tìm x, biết:
a) (x - 3.5).12 = 0; b) 35. (x-10) = 35;
c) ( x -5): 3 + 3 = 24 d) ( x- 4) : 3 - 2 = 100
c) 25.(2.x - 4).12 = 0 d) (x- 4) : 6 - 5 = 10
tìm x, biết:
a, x:3.5=3/4 :-5/6
b,x-1.2/2 = 8/x-1.2
`x :3*5 = 3/4 :(-5/6)`
`x :15 =3/4*(-6/5)=-9/10`
`x = -9/10 *15 =-27/2`
`x-1*2/2 = 8/x -1.2`
`x- 1*1 = 8/x -2`
`x-8/x = -2+1`
`x-8/x =-1`
`x^2 -8x =-x`
`x^2 -8x +x=0`
`x^2 -7x =0`
`x(x-7) =0`
`=>[(x=0),(x=7):}`
`a, x \div 15=-9/10`
`x=-9/10*14`
`x=-27/2`
`b, (x-1*2)/2=8/(x-1*2)`
\(\left(x-1\cdot2\right)\cdot\left(x-1\cdot2\right)=8\cdot2\)
`(x-1*2)^2=16`
`(x-1*2)^2=(+-4)^2`
\(\Rightarrow\left[{}\begin{matrix}x-1\cdot2=4\\x-1\cdot2=-4\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x-2=4\\x-2=-4\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=4+2\\x=\left(-4\right)+2\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=6\\x=-2\end{matrix}\right.\)
Tìm số nguyên x, biết:
a) (x + 12) . (x – 6) > 0
b) (10 - x) . (3 - x) < 0
\(a,\left(x+12\right)\left(x-6\right)>0\\ \Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+12>0\\x-6>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+12< 0\\x-6< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>-12\\x>6\end{matrix}\right.\\\left\{{}\begin{matrix}x< -12\\x< 6\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x>6\\x< -12\end{matrix}\right.\)
\(b,\left(10-x\right)\left(3-x\right)< 0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}10-x< 0\\3-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}10-x>0\\3-x< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>10\\x< 3\left(vô.lí\right)\end{matrix}\right.\\\left\{{}\begin{matrix}x< 10\\x>3\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x< 10\\x>3\end{matrix}\right.\)
\(a,\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+12>0\\x-6>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+12< 0\\x-6< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x>6\\x< -12\end{matrix}\right.\\ \Rightarrow x\in\left\{...;-15;-14;-13;7;8;9;...\right\}\\ b,\Rightarrow\left(x-10\right)\left(x-3\right)< 0\\ \Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-10>0\\x-3< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x-10< 0\\x-3>0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x>10;x< 3\left(\text{loại}\right)\\3< x< 10\end{matrix}\right.\\ \Rightarrow x\in\left\{4;5;6;7;8;9\right\}\)
\(a,\left(x+12\right)\left(x+6\right)>0\) \(khi\) \(x>6\Rightarrow x\in\left\{7,8,9,...\right\}\)
\(b,\left(10-x\right)\left(3-x\right)< 0\) \(khi\) \(x< 10\Rightarrow x\in\left\{9,8,7,...\right\}\)
a) Tính hai số bằng 0 khi nào?
b) Áp dụng: Tìm x, biết:
a) 2( x - 5)= 0 b) 12(x - 35)=0 c) (x-10).(x-13)=0
a) (Tớ đọc đề không hiểu, không nhớ :v)
b) a. `2(x-5) = 0`
`x-5 = 0:2`
`x-5 = 0`
`x=0+5`
`x=5`
b) `12(x-35) = 0`
`x-35=0:12`
`x-35 =0`
`x=0+35`
`x=35`
c) `(x-10).(x-13) = 0`
`=> x-10=0`
`x-13=0`
`=> x=0+10`
`x=0+13`
`=>x=10`
`x=13`.
a) Tích 2 số bằng không khi 1 trong 2 số bằng 0
b) \(2\left(x-5\right)=0\)
\(\Rightarrow x-5=0\)
\(\Rightarrow x=5\)
\(12\left(x-35\right)=0\)
\(\Rightarrow x-35=0\)
\(\Rightarrow x=35\)
\(\left(x-10\right)\left(x-13\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-10=0\\x-13=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=10\\x=13\end{matrix}\right.\)
Tìm số nguyên x và y biết:
a) \(\dfrac{x}{6}-\dfrac{3}{y}=\dfrac{1}{12}\)
b) (x - 3)( x+10) ≤ 0
Tìm số nguyên x và y biết:
a) \(\dfrac{x}{6}-\dfrac{3}{y}=\dfrac{1}{12}\)
b) (x - 3)( x+10) ≤ 0
a)
\(x+\left(x+2\right)+\left(x+4\right)+...+\left(x+98\right)=0\)
\(x+x+2+x+4+...+x+98=0\)
\(50x+\left(98+2\right).\left[\left(98-2\right):2+1\right]:2=0\)
\(50x+100.49:2=0\)
\(50x+49.50=0\)
\(50x=0-49.50\)
\(50x=-2450\)
\(x=-2450:50\)
\(x=-49\)
b)
\(\left(x-5\right)+\left(x-4\right)+\left(x-3\right)+...+\left(x+11\right)+\left(x+12\right)=99\)
\(x+x+x+...+x-5-4-3-...+11+12=99\)
\(18x+6+7\text{+ 8 + 9 + 10 + 11 + 12 = 99}\)
\(18x+63=99\)
\(18x=99-63\)
\(18x=36\)
\(x=36:18\)
\(x=2\)
a) x + (x + 2) + (x + 4) + ... + (x + 98) = 0
x + x + 2 + x + 4 + ... + x + 98 = 0
50x + (98 + 2).[(98 - 2) : 2 + 1]:2 = 0
50x + 100 .49 : 2 = 0
50x + 49.50 = 0
50x = 0 - 49.50
50x = -2450
x = -2450 : 50
x = -49
b) (x - 5) + (x - 4) + (x - 3) + ... + (x + 11) + (x + 12) = 99
x + x + x + ... + x - 5 - 4 - 3 - ... + 11 + 12 = 99
18x + 6 + 7 + 8 + 9 + 10 + 11 + 12 = 99
18x + 63 = 99
18x = 99 - 63
18x = 36
x = 36 : 18
x = 2
Tìm số tự nhiên x, biết:
a) 18-(2x+5)=9
b) 23x-4 = 32
c) (3x+2)2 =64
d) x(2x - 12) = 0
a) \(18-\left(2x+5\right)=9\)
\(2x+5=18-9\)
\(2x+5=9\)
\(2x=9-5\)
\(2x=4\)
\(x=2\)
a) \(18-\left(2x+5\right)=9\)
\(\Rightarrow2x+5=18-9=9\)
\(\Rightarrow2x=9-5=4\Rightarrow x=4:2=2\)
b) \(23x-4=32\Rightarrow23x=32+4=36\Rightarrow x=\dfrac{36}{23}\)
c) \(\left(3x+2\right)^2=64\)
\(\Rightarrow\left[{}\begin{matrix}3x+2=8\\3x+2=-8\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{10}{3}\end{matrix}\right.\)
d) \(x\left(2x-12\right)=0\Rightarrow6x\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
2x+5=18-9
2x+5=9
2x=9-5
2x=4
x=4:2
x=2
c)3x+2=64:2
3x+2=32
3x=32-2
3x=30
x=30:3
x=10
Tìm x∈Z, biết:
a)x.(x-6)=0
b)(-7-x).(-x+5)=0
c)(x+3).(x-7)=0
d)(x-3).(x2+12)=0
e)(x+1).(2-x) ≥0
f)(x-3).(x-5) ≤0
a) \(x\left(x-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b) \(\left(-7-x\right)\left(-x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-7\\x=-5\end{matrix}\right.\)
c) \(\left(x+3\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-7=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)
d) \(\left(x-3\right)\left(x^2+12\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\text{(vô lý)}\end{matrix}\right.\)
\(\Rightarrow x=3\)
e) \(\left(x+1\right)\left(2-x\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x+1\ge0\\2-x\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x+1\le0\\2-x\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-1\\x\le2\end{matrix}\right.\\\left[{}\begin{matrix}x\le-1\\x\ge2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-1\le x\le2\\x\in\varnothing\end{matrix}\right.\)
\(\Rightarrow-1\le x\le2\)
f) \(\left(x-3\right)\left(x-5\right)\le0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x-3\le0\\x-5\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x-3\ge0\\x-5\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\le3\\x\ge5\end{matrix}\right.\\\left[{}\begin{matrix}x\ge3\\x\le5\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow3\le x\le5\)
a) =>\(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b => \(\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-7\\x=5\end{matrix}\right.\)
d) => \(\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\end{matrix}\right.\)(vô lí) => x=3
c) => \(\left[{}\begin{matrix}x+3=0\\x-7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)
3/ Tìm x,biết:
a) 3 √𝑥−3=12
b) √16(1−2𝑥)−8=0
c) √4(9−6𝑥+𝑥2)−12= 0
a) \(3\sqrt{x-3}=12\left(đk:x\ge3\right)\)
\(\Leftrightarrow\sqrt{x-3}=4\)
\(\Leftrightarrow x-3=16\Leftrightarrow x=19\left(tm\right)\)
b) \(\sqrt{16\left(1-2x\right)}-8=0\left(đk:x\le\dfrac{1}{2}\right)\)
\(\Leftrightarrow4\sqrt{1-2x}=8\Leftrightarrow\sqrt{1-2x}=2\)
\(\Leftrightarrow1-2x=4\Leftrightarrow x=-\dfrac{3}{2}\left(tm\right)\)
c) \(\sqrt{4\left(9-6x+x^2\right)}-12=0\)
\(\Leftrightarrow2\sqrt{\left(x-3\right)^2}=12\)
\(\Leftrightarrow\left|x-3\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=6\\x-3=-6\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-3\end{matrix}\right.\)
a: ta có: \(3\sqrt{x-3}=12\)
\(\Leftrightarrow x-3=16\)
hay x=19
b: Ta có: \(\sqrt{16\left(1-2x\right)}-8=0\)
\(\Leftrightarrow1-2x=4\)
\(\Leftrightarrow2x=-3\)
hay \(x=-\dfrac{3}{2}\)
tìm x,biết:
a, 3(x-3)-6x=0
b, 2x(x-15)+2x
c, 2(x-3)+3x=9
d, x(x-11)+2(x-11)=0
e,x(x+2)+8=x^2
f, 8(x+1)+2x=-2
g,12-3(x+2)=0
a: \(3\left(x-3\right)-6x=0\)
=>\(3x-9-6x=0\)
=>-3x-9=0
=>3x+9=0
=>3x=-9
=>\(x=-\dfrac{9}{3}=-3\)
b: Đề thiếu vế phải rồi bạn
c: \(2\left(x-3\right)+3x=9\)
=>2x-6+3x=9
=>5x-6=9
=>5x=6+9=15
=>x=15/5=3
d: \(x\left(x-11\right)+2\left(x-11\right)=0\)
=>\(\left(x-11\right)\left(x+2\right)=0\)
=>\(\left[{}\begin{matrix}x-11=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=11\\x=-2\end{matrix}\right.\)
e: \(x\left(x+2\right)+8=x^2\)
=>\(x^2+2x+8=x^2\)
=>2x+8=0
=>2x=-8
=>x=-8/2=-4
f: \(8\left(x+1\right)+2x=-2\)
=>\(8x+8+2x=-2\)
=>10x=-2-8=-10
=>\(x=-\dfrac{10}{10}=-1\)
g: 12-3(x+2)=0
=>3(x+2)=12
=>x+2=12/3=4
=>x=4-2=2