Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
NA
Xem chi tiết
HH
18 tháng 2 2021 lúc 22:32

1/ \(\lim\limits\dfrac{\dfrac{2^n}{7^n}-5.7.\left(\dfrac{7}{7}\right)^n}{\dfrac{2^n}{7^n}+\left(\dfrac{7}{7}\right)^n}=-35\)

2/ \(\lim\limits\dfrac{\dfrac{3^n}{7^n}-2.5.\left(\dfrac{5}{7}\right)^n}{\dfrac{2^n}{7^n}+\dfrac{7^n}{7^n}}=0\)

3/ \(\lim\limits\sqrt[3]{\dfrac{\dfrac{5}{n}-\dfrac{8n}{n}}{\dfrac{n}{n}+\dfrac{3}{n}}}=\sqrt[3]{-8}=-2\)

Bình luận (0)
H24
Xem chi tiết
MP
25 tháng 8 2023 lúc 14:57

a) Vì hàm số \(u\) xác định trên tập hợp các số nguyên dương
\(\mathbb{N}^{\text{∗ }}\) nên nó là một dãy số vô hạn.

b) Ta có:

\(u_1=1^3=1\\ u_2=2^3=8\\ u_3=3^3=27\\ u_4=4^3=64\\ u_5=5^3=125.\)

Bình luận (0)
NT
23 tháng 7 2023 lúc 23:19

a: Dáy số này là vô hạng

b: 1;8;27;64;125

Bình luận (0)
LT
Xem chi tiết
HH
30 tháng 1 2021 lúc 19:15

Nếu ở hệ số ở mũ 2 là 1 có khi xài đạo hàm chút là ra tổng quát, còn cái này thì...khó :D

Gọi q là k đi, máy tui kẹt chữ q, xài On-screen keyboard mệt lắm

\(u_n=k+2k^2+3k^3+...+nk^n\)

Nhận thấy nếu giờ chia k cho un thì sẽ có \(1+2k+3k+...+nk^{n-1}\), ta đã đưa về dạng tổng quát có thể đạo hàm được, sau đó chỉ cần nhân k là ra un

\(\dfrac{u_n}{k}=1+2k+3k^2+...+nk^{n-1}\)

\(f\left(x\right)=1+k+k^2+...+k^n\)

\(\left\{{}\begin{matrix}u_1=1\\q=k\end{matrix}\right.\Rightarrow f\left(x\right)=1.\dfrac{q^{n+1}-1}{q-1}=\dfrac{k^{n+1}-1}{k-1}\)

Dao ham 2 ve: 

\(\Rightarrow f'\left(x\right)=1+2k+3k^2+...+nk^{n-1}=\dfrac{\left(k^{n+1}-1\right)'\left(k-1\right)-\left(k-1\right)'\left(k^{n+1}-1\right)}{\left(k-1\right)^2}\)

\(\Leftrightarrow f'\left(x\right)=\dfrac{\left(n+1\right)k^n\left(k-1\right)-k^{n+1}+1}{\left(k-1\right)^2}\)

\(f'\left(x\right)=\dfrac{k^n\left[\left(n+1\right)\left(k-1\right)-k\right]+1}{\left(k-1\right)^2}\)

\(\Rightarrow f'\left(x\right)=\dfrac{u_n}{k}\Rightarrow u_n=f'\left(x\right).k=\dfrac{k^{n+1}\left[\left(n+1\right)\left(k-1\right)-k\right]+k}{\left(k-1\right)^2}\)

\(\Rightarrow lim\left(u_n\right)=lim\dfrac{k^{n+1}\left[\left(n+1\right)\left(k-1\right)-k\right]+k}{\left(k-1\right)^2}=\lim\limits\dfrac{k^{n+1}\left[\left(n+1\right)\left(k-1\right)-k\right]}{\left(k-1\right)^2}+\dfrac{k}{\left(k-1\right)^2}\)

\(\left|k\right|< 1\Rightarrow lim\left(k^{n+1}\right)=0\)

\(\Rightarrow\lim\limits\left(u_n\right)=\dfrac{k}{\left(k-1\right)^2}\)

P/s: Một cách làm rất mới mẻ, có thể tổng quát cho nhiều bài toàn sinh ra từ dãy số vừa rồi :D

Bình luận (0)
AH
30 tháng 1 2021 lúc 19:52

Lời giải:

\(u_n=q+2q^2+3q^3+...+nq^n\)

\(qu_n=q^2+2q^3+3a^4+...+nq^{n+1}\)

\(\Rightarrow u_n(1-q)=q+q^2+q^3+...+q^n-nq^{n+1}\)

\(\Leftrightarrow u_n(1-q)=q.\frac{q^n-1}{q-1}-nq^{n+1}\)

\(\Leftrightarrow u_n=q.\frac{1-q^n}{(1-q)^2}+\frac{nq^{n+1}}{q-1}=\frac{q-q^{n+1}}{(1-q)^2}+\frac{nq^{n+1}}{q-1}\)

Vì $|q|< 1$ nên $\lim\limits q^{n+1}=0$ nên $\lim\limits u_n=\frac{q}{(1-q)^2}$

 

 

Bình luận (0)
PM
Xem chi tiết
HN
26 tháng 11 2023 lúc 21:33

loading...

Bình luận (0)
HN
Xem chi tiết
TL
19 tháng 12 2018 lúc 21:35

1)

Quần cư nông thôn:

Có mật độ dân số thấp. Sống theo làng mạc, thôn xóm. Chủ yếu là nhà sàn gắn liền với ruộng nương. Sống theo quản hệ thị tộc (dòng máu). Nghề chủ yếu là sản xuất nông, lâm ngư nghiệp.


Quần cư đô thị:

Có mật độ dân số cao. Sống theo khối, phường. Chủ yếu là nhà cao tầng, khu chung cư, biệt thự... Sống trong một cộng đồng có luật pháp. Nghể chủ yếu là sản xuất công nghiệp và dịch vụ.

2.

- Vị trí: nằm ở giữa 2 đường chí tuyến

- Đặc điểm: + là khu vực nhận được nhiều ánh sáng từ mặt trời

+ Nhiệt độ trung bình luôn trên 20oC

+ Có gió tín phong thổi quanh năm

+ Lượng mưa trung bình từ 1000mm đến 2000mm một năm

+ Sinh vật phong phú và đa dạng

+ Dân cư tập trung đông đúc

3.

- Vị trí : \(5^0B->5^0N\)

* Đặc điểm

-Khí hậu

+Nhiệt độ khoảng từ 25 độ C đến 30 độ C.

+Lượng mưa trung bình một năm từ 1500mm đến 2500mm, mưa quanh năm.

+Độ ẩm cao , trung bình trên 80%, nên không khí ẩm ướt , ngột ngạt.

+Thời tiết nóng ẩm quanh năm.

Bình luận (0)
MN
Xem chi tiết
NL
29 tháng 3 2021 lúc 22:30

Đề không cho sẵn dãy tăng à? Vậy phải chứng minh nó tăng trước

\(u_{n+1}=\dfrac{u_n^2+2018u_n+1}{2020}\)

\(u_{n+1}-u_n=\dfrac{u_n^2+2018u_n+1}{2020}-u_n=\dfrac{\left(u_n-1\right)^2}{2020}\ge0\) \(\Rightarrow\) dãy tăng và không bị chặn trên \(\Rightarrow lim\left(u_n\right)=+\infty\)

\(\Rightarrow2020u_{n+1}=u_n^2+2018u_n+1\)

\(\Leftrightarrow2020u_{n+1}-2020=u_n^2+2018u_n-2019\)

\(\Leftrightarrow2020\left(u_{n+1}-1\right)=\left(u_n+2019\right)\left(u_n-1\right)\)

\(\Rightarrow\dfrac{1}{2020\left(u_{n+1}-1\right)}=\dfrac{1}{\left(u_n+2019\right)\left(u_n-1\right)}=\dfrac{1}{2020}\left(\dfrac{1}{u_n-1}-\dfrac{1}{u_n+2019}\right)\)

\(\Rightarrow\dfrac{1}{u_n+2019}=\dfrac{1}{u_n-1}-\dfrac{1}{u_{n+1}-1}\)

Thế n=1;2;...;n ta được:

\(\dfrac{1}{u_1+2019}=\dfrac{1}{u_1-1}-\dfrac{1}{u_2-1}\)

\(\dfrac{1}{u_2+2019}=\dfrac{1}{u_2-1}-\dfrac{1}{u_3-1}\)

...

\(\dfrac{1}{u_n+2019}=\dfrac{1}{u_n-1}-\dfrac{1}{u_{n+1}-1}\)

Cộng vế: \(S_n=\dfrac{1}{u_n-1}-\dfrac{1}{u_{n+1}-1}=\dfrac{1}{2018}-\dfrac{1}{u_{n+1}-1}\)

\(\Rightarrow\lim\left(S_n\right)=\dfrac{1}{2018}-\dfrac{1}{\infty}=\dfrac{1}{2018}\)

Bình luận (0)
BB
Xem chi tiết
BB
Xem chi tiết
HN
Xem chi tiết
PB
Xem chi tiết
CT
11 tháng 10 2018 lúc 8:02

Chọn D.

Chia cả tử và mẫu cho n2 ta có được:

Bình luận (0)