cho cac so
x/y+z+t=y/x+z+t=z/x+y+t=t/x+y+z
tính :A=x+y/x+t + y+z/x+t + z+t/x+y + t+x/z+y
Cho cac số dương `x;y;z` và `t` . Cm:
\(\dfrac{x}{y+z+t}+\dfrac{y}{z+t+x}+\dfrac{z}{t+x+y}+\dfrac{t}{x+y+z}+\dfrac{y+z+t}{x}+\dfrac{z+t+x}{y}+\dfrac{t+x+y}{z}+\dfrac{x+y+x}{t}\ge\dfrac{40}{3}\)
Phân số cuối cùng chắc em ghi nhầm
\(\dfrac{x}{y+z+t}+\dfrac{y+z+t}{9x}\ge2\sqrt{\dfrac{x\left(y+z+t\right)}{9x\left(y+z+t\right)}}=\dfrac{2}{3}\)
Tương tự:
\(\dfrac{y}{z+t+x}+\dfrac{z+t+x}{9y}\ge\dfrac{2}{3}\)
\(\dfrac{z}{t+x+y}+\dfrac{t+x+y}{9z}\ge\dfrac{2}{3}\)
\(\dfrac{t}{x+y+z}+\dfrac{x+y+z}{9t}\ge\dfrac{2}{3}\)
Đồng thời:
\(\dfrac{8}{9}\left(\dfrac{y+z+t}{x}+\dfrac{z+t+x}{y}+\dfrac{t+x+y}{z}+\dfrac{x+y+z}{t}\right)\)
\(\ge\dfrac{8}{9}\left(\dfrac{3\sqrt[3]{yzt}}{x}+\dfrac{3\sqrt[3]{ztx}}{y}+\dfrac{3\sqrt[3]{txy}}{z}+\dfrac{3\sqrt[3]{xyz}}{t}\right)\)
\(\ge\dfrac{8}{3}.4\sqrt[4]{\dfrac{\sqrt[3]{yzt}.\sqrt[3]{ztx}.\sqrt[3]{txy}.\sqrt[3]{xyz}}{xyzt}}=\dfrac{32}{3}\)
Cộng vế:
\(VT\ge4.\dfrac{2}{3}+\dfrac{32}{3}=\dfrac{40}{3}\)
Dấu "=" xảy ra khi \(x=y=z=t\)
Cho dãy tỉ số (2015*x+y+z+t)/x=(x+2015y+z+t)/y=(x+y+2015z+t)/z=(x+y+z+2015t)/t Tính A = (x+y)/(z+t)=(y+z)/(t+x)=(z+t)/(x+y)=(t+x)/(y+z)
cho x/y+z+t=y/x+z+t=z/x+y+t=t/x+y+z
tính P=x+y/z+t+y+z/t+x+z+t/x+y=t+x/z+yb viết lại cái đề đi mik k hieuur
cho x/y+z+t=y/z+t+x=z/t+x+y=t/x+y+z Chứng minh rằng biểu thức sau có giá trị nguyên: A=(x+y/z+t)+(y+z/t+x)+(z+t/x+y)+(t+x/y+z)
x/y+z+t+2015 = y/x+z+t+2015 , y/x+z+t+2015 = z/x+y+t+2015 , z/x+y+t+2015 = t/x+y+z+2015 , t/x+y+z+2015 = 2015 /x+y+z+t*x+y/z+t+2015 + y+z/x+t+2015 + z+t/x+y+2015 + (t+2015) /x+y+z + 2015 +x /y+z+t
cho x/y+z+t = y/x+z+t = z/x+y+t = t/x+y+z .
Tính P=x+y/z+t + y+z/t+x + z+t/x+y + t+x/y+z
*)Nếu \(x=y=z=t\)
\(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{y+x+t}=\dfrac{t}{x+y+z}\)
Áp dụng tích chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{y+x+t}=\dfrac{t}{x+y+z}=\dfrac{x+y+z+t}{3\left(x+y+z+t\right)}=\dfrac{1}{3}\)=> \(P=\dfrac{2x}{2x}+\dfrac{2x}{2x}+\dfrac{2x}{2x}+\dfrac{2x}{2x}=4\)
*)Nếu có ít nhất 2 số khác nhau , giả sử \(x\ne y\)
=> \(\dfrac{x}{y+z+t}=\dfrac{y}{x+z+t}=\dfrac{x-y}{y+z+t-x-z-t}=\dfrac{x-y}{y-x}=-1\)
=> \(x=-\left(y+z+t\right)\Rightarrow x+y+z+t=0\)
=> \(\left[{}\begin{matrix}x+y=-\left(z+t\right)\Rightarrow\dfrac{x+y}{z+t}=-1\\y+z=-\left(t+x\right)\Rightarrow\dfrac{y+z}{t+x}=-1\\z+t=-\left(x+y\right)\Rightarrow\dfrac{z+t}{x+y}=-1\\t+x=-\left(y+z\right)\Rightarrow\dfrac{t+x}{y+z}=-1\end{matrix}\right.\)
=> \(P=-1-1-1-1=-4\)
Vậy P=4
P = -4
cho x+y+z+t khác o thỏa mãn x/(y+z+t)+y/(x+t+z)+z/(t+x+y)+t/(x+y+z) chứng minh rằng biểu thức A=x+y/z+t +y+z/t+x z+t/x+y+t+x/x+y có giá trị là 1 số nguyên
Cho x/y+z+t=y/z+t+x=z/t+x+y=t/x+y+z. Chứng minh rằng: biểu thức sau có giá trị nguyên: A=x+
y/z+t + y+z/t+x + z+t/x+y + t+x/y+z
2x+y+z+t/x = x+2y+z+t/y = x+y+2z+t/z = x+y+z+2t/t
Tính A = x+y/z+t+ y+z/t+x + z+t/x+y + t+x/y+z