Ôn tập chương 1

PT

cho x/y+z+t = y/x+z+t = z/x+y+t = t/x+y+z .

Tính P=x+y/z+t + y+z/t+x + z+t/x+y + t+x/y+z

NT
21 tháng 10 2017 lúc 21:19

*)Nếu \(x=y=z=t\)
\(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{y+x+t}=\dfrac{t}{x+y+z}\)
Áp dụng tích chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{y+x+t}=\dfrac{t}{x+y+z}=\dfrac{x+y+z+t}{3\left(x+y+z+t\right)}=\dfrac{1}{3}\)=> \(P=\dfrac{2x}{2x}+\dfrac{2x}{2x}+\dfrac{2x}{2x}+\dfrac{2x}{2x}=4\)
*)Nếu có ít nhất 2 số khác nhau , giả sử \(x\ne y\)
=> \(\dfrac{x}{y+z+t}=\dfrac{y}{x+z+t}=\dfrac{x-y}{y+z+t-x-z-t}=\dfrac{x-y}{y-x}=-1\)
=> \(x=-\left(y+z+t\right)\Rightarrow x+y+z+t=0\)
=> \(\left[{}\begin{matrix}x+y=-\left(z+t\right)\Rightarrow\dfrac{x+y}{z+t}=-1\\y+z=-\left(t+x\right)\Rightarrow\dfrac{y+z}{t+x}=-1\\z+t=-\left(x+y\right)\Rightarrow\dfrac{z+t}{x+y}=-1\\t+x=-\left(y+z\right)\Rightarrow\dfrac{t+x}{y+z}=-1\end{matrix}\right.\)
=> \(P=-1-1-1-1=-4\)

Vậy P=4
P = -4

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
H24
Xem chi tiết
FH
Xem chi tiết
BP
Xem chi tiết
LV
Xem chi tiết
TN
Xem chi tiết
PT
Xem chi tiết
NH
Xem chi tiết
FH
Xem chi tiết