Cho dãy tỉ số (2015*x+y+z+t)/x=(x+2015y+z+t)/y=(x+y+2015z+t)/z=(x+y+z+2015t)/t Tính A = (x+y)/(z+t)=(y+z)/(t+x)=(z+t)/(x+y)=(t+x)/(y+z)
cho x/y+z+t=y/z+t+x=z/t+x+y=t/x+y+z Chứng minh rằng biểu thức sau có giá trị nguyên: A=(x+y/z+t)+(y+z/t+x)+(z+t/x+y)+(t+x/y+z)
x/y+z+t+2015 = y/x+z+t+2015 , y/x+z+t+2015 = z/x+y+t+2015 , z/x+y+t+2015 = t/x+y+z+2015 , t/x+y+z+2015 = 2015 /x+y+z+t*x+y/z+t+2015 + y+z/x+t+2015 + z+t/x+y+2015 + (t+2015) /x+y+z + 2015 +x /y+z+t
Cho x/y+z+t=y/z+t+x=z/t+x+y=t/x+y+z. Chứng minh rằng: biểu thức sau có giá trị nguyên: A=x+
y/z+t + y+z/t+x + z+t/x+y + t+x/y+z
2x+y+z+t/x = x+2y+z+t/y = x+y+2z+t/z = x+y+z+2t/t
Tính A = x+y/z+t+ y+z/t+x + z+t/x+y + t+x/y+z
Cho x/(y+z+t)=y/(z+t+x)=z/(t+x+y)=t/(x+y+z).CM: P=(x+y)/(z+t)+(y+z)/(t+x)+(z+t)/(x+y)+(t+x)/(y+z) có giá trị nguyên
cho x/z+t=y+z/t+x=z+t/x+y=t/x+y+z
Tính P= x+y/z+t + y+z/t+x + z+t/x+y + t+x/z+y
Cho \(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\)
CMR biểu thức sau có giá trị nguyên
\(A=\dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{t+z}{y+z}\)
Cho biết x/y+z+t = y/z+t+x = z/t+x+y = t/x+y+z
Tính C =( x+y/z+t ) + ( y+z/t+x) + (z+t/x+y) + (t+x/y+z)