Những câu hỏi liên quan
XN
Xem chi tiết
AH
14 tháng 11 2021 lúc 11:49

Lời giải:
Áp dụng BĐT Cô-si:

\(2=a+b=\frac{a}{2}+\frac{a}{2}+b\geq 3\sqrt[3]{\frac{a^2b}{4}}\)

\(\Rightarrow \frac{2}{3}\geq \sqrt[3]{\frac{a^2b}{4}}\Rightarrow \frac{8}{27}\geq \frac{a^2b}{4}\)

\(\Leftrightarrow a^2b\leq \frac{32}{27}\Leftrightarrow P\leq \frac{32}{27}\)

Vậy $P_{\max}=\frac{32}{27}$. Giá trị này đạt tại $\frac{a}{2}=b=\frac{2}{3}$

 

Bình luận (0)
DV
Xem chi tiết
RH
11 tháng 10 2021 lúc 20:08

Không có max nhé bạn

undefined

undefined

Bình luận (1)
NM
Xem chi tiết
RH
28 tháng 5 2022 lúc 19:24

Bình luận (1)
RH
28 tháng 5 2022 lúc 19:25

Bình luận (0)
H24
28 tháng 5 2022 lúc 19:29

ôn zăn ik bà, tón gánh hong nổi đâu =))

Bình luận (4)
MN
Xem chi tiết
NL
25 tháng 8 2021 lúc 21:25

Đặt \(log_9a=log_{12}b=log_{15}\left(a+b\right)=t\Rightarrow\left\{{}\begin{matrix}a=9^t\\b=12^t\\a+b=15^t\end{matrix}\right.\)

\(\Rightarrow9^t+12^t=15^t\)

\(\Rightarrow\left(\dfrac{3}{5}\right)^t+\left(\dfrac{4}{5}\right)^t=1\)

Hàm \(f\left(t\right)=\left(\dfrac{3}{5}\right)^t+\left(\dfrac{4}{5}\right)^t\) có \(f'\left(t\right)=\left(\dfrac{3}{5}\right)^tln\left(\dfrac{3}{5}\right)+\left(\dfrac{4}{5}\right)^t.ln\left(\dfrac{4}{5}\right)< 0\Rightarrow\) nghịch biến trên R

\(\Rightarrow f\left(t\right)\) có tối đa 1 nghiệm \(\Rightarrow t=2\) là nghiệm duy nhất 

\(\Rightarrow\dfrac{a}{b}=\left(\dfrac{3}{4}\right)^2=\dfrac{9}{16}\)

Bình luận (0)
LB
Xem chi tiết
LP
18 tháng 5 2023 lúc 20:33

Ta thấy \(ab\le\dfrac{a^2+b^2}{2}=1\) và \(a+b\le\sqrt{2\left(a^2+b^2\right)}=2\). Áp dụng BĐT B.C.S, ta được \(P=\dfrac{a^4}{ba^2+a^2}+\dfrac{b^4}{ab^2+b^2}\) \(\ge\dfrac{\left(a^2+b^2\right)^2}{ba^2+ab^2+a^2+b^2}=\dfrac{2^2}{ab\left(a+b\right)+2}\ge\dfrac{4}{1.2+2}=1\)

ĐTXR \(\Leftrightarrow a=b=1\)

Vậy GTNN của P là 1 khi \(a=b=1\)

Bình luận (0)
H24
Xem chi tiết
PB
Xem chi tiết
CT
30 tháng 10 2017 lúc 5:24

Đáp án A

Từ bảng biến thiên em thấy  P min = P − 2 + 10 4 = 2 10 − 3 2

Bình luận (0)
MD
Xem chi tiết
TH
23 tháng 1 2021 lúc 23:22

1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:

\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).

Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).

Bình luận (0)
NL
23 tháng 1 2021 lúc 23:54

2.

\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)

Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)

\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )

\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)

\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)

Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)

3. Chia 2 vế giả thiết cho \(x^2y^2\)

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)

\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)

\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

Bình luận (0)
PO
Xem chi tiết
DL
18 tháng 2 2022 lúc 13:00

ráng chờ thầy nguyễn việt lâm  onl r nhờ nghen:>

Bình luận (3)
NL
18 tháng 2 2022 lúc 14:27

\(\sqrt{\left(16+9\right)\left(16a^2b^2+9\right)}\ge\sqrt{\left(16ab+9\right)^2}=16ab+9\)

\(\Rightarrow\sqrt{16a^2b^2+9}\ge\dfrac{1}{5}\left(16ab+9\right)\)

\(\Rightarrow P\ge\dfrac{1}{5}\left(16ab+9\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=\dfrac{1}{5}\left[16\left(a+b\right)+9\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\right]\)

\(P\ge\dfrac{1}{5}\left[32+9.\dfrac{4}{a+b}\right]=\dfrac{1}{5}\left[32+\dfrac{9.4}{2}\right]=10\)

\(P_{min}=10\) khi \(a=b=1\)

Bình luận (1)