Tìm x biết
a) 2 3 x : 1 5 = 1 1 3 : 25 %
b) 25 % x + 1 2 x = 7 , 5
Tìm x biết
a) \(\dfrac{x}{3}=\dfrac{7}{25}+\dfrac{-1}{5}\)
b)\(\dfrac{4}{9}+\dfrac{x}{5}=\dfrac{5}{11}\)
c) \(\dfrac{-5}{9}+\dfrac{x}{10}=\dfrac{1}{3}\)
a) Ta có: \(\dfrac{x}{3}=\dfrac{7}{25}+\dfrac{-1}{5}\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{7}{25}+\dfrac{-5}{25}=\dfrac{2}{25}\)
hay \(x=\dfrac{6}{25}\)
Vậy: \(x=\dfrac{6}{25}\)
b) Ta có: \(\dfrac{4}{9}+\dfrac{x}{5}=\dfrac{5}{11}\)
\(\Leftrightarrow\dfrac{x}{5}=\dfrac{5}{11}-\dfrac{4}{9}=\dfrac{45}{99}-\dfrac{44}{99}=\dfrac{1}{99}\)
hay \(x=\dfrac{5}{99}\)
Vậy: \(x=\dfrac{5}{99}\)
c) Ta có: \(\dfrac{-5}{9}+\dfrac{x}{10}=\dfrac{1}{3}\)
\(\Leftrightarrow\dfrac{x}{10}=\dfrac{1}{3}+\dfrac{5}{9}=\dfrac{3}{9}+\dfrac{5}{9}=\dfrac{8}{9}\)
hay \(x=\dfrac{80}{9}\)
Vậy: \(x=\dfrac{80}{9}\)
tìm x biết
a)x-\(\dfrac{3}{7}\)=\(\dfrac{2}{5}.\dfrac{1}{4}\)
b)x+\(\dfrac{4}{5}\)=\(\dfrac{-5}{12}\).\(\dfrac{3}{25}\)
c)\(\dfrac{x}{182}\)=\(\dfrac{-6}{12}\).\(\dfrac{35}{91}\)
a/ \(x-\dfrac{3}{7}=\dfrac{2}{5}\cdot\dfrac{1}{4}\)
\(x-\dfrac{3}{7}=\dfrac{1}{10}\)
\(x=\dfrac{1}{10}+\dfrac{3}{7}=\dfrac{37}{70}\)
Vậy....
b/ \(x+\dfrac{4}{5}=-\dfrac{5}{12}\cdot\dfrac{3}{25}\)
\(x+\dfrac{4}{5}=-\dfrac{1}{20}\)
\(x=-\dfrac{1}{20}-\dfrac{4}{5}=-\dfrac{17}{20}\)
Vậy....
c/ \(\dfrac{x}{182}=-\dfrac{6}{12}\cdot\dfrac{35}{91}\)
\(\dfrac{x}{182}=-\dfrac{5}{26}\)
\(=>x\cdot26=-5\cdot182\)
\(26x=-910\)
\(x=-910:26=-35\)
Vậy....
a) Ta có: \(x-\dfrac{3}{7}=\dfrac{2}{5}\cdot\dfrac{1}{4}\)
\(\Leftrightarrow x-\dfrac{3}{7}=\dfrac{1}{10}\)
\(\Leftrightarrow x=\dfrac{1}{10}+\dfrac{3}{7}=\dfrac{7}{70}+\dfrac{30}{70}\)
hay \(x=\dfrac{37}{70}\)
Vậy: \(x=\dfrac{37}{70}\)
bài 1: phân tích đa thức thành nhân tử
a,2x+10y
b,x\(^2+4x+4\)
c,\(x^2-y^2+10y-25\)
bài 2 tìm x, biết
a,\(x^2-3x+x-3=0\)
b,\(2x\left(x-3\right)-\dfrac{1}{2}\left(4x^2-3\right)=0\)
c,\(x^2-\left(x-3\right)\left(2x-5\right)=9\)
\(B1\\ a,2x+10y=2\left(x+5y\right)\\ b,x^2+4x+4=x^2+2.2x+2^2=\left(x+2\right)^2\\ c,x^2-y^2+10y-25\\ =\left(x^2-y^2\right)+5\left(2y-5\right)\\ =\left(x-y\right)\left(x+y\right)+5\left(2y-5\right)\\ B2\)
\(a,x^2-3x+x-3=0\\ =>x\left(x-3\right)+\left(x-3\right)=0\\ =>\left(x+1\right)\left(x-3\right)=0\\ =>\left[{}\begin{matrix}x+1=0\\x-3=0\end{matrix}\right.=>\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\\ b,2x\left(x-3\right)-\dfrac{1}{2}\left(4x^2-3\right)=0\\ =>2x^2-6x-2x^2+\dfrac{3}{2}=0\\ =>-6x=-\dfrac{3}{2}\\ =>x=\left(-\dfrac{3}{2}\right):\left(-6\right)\\ =>x=\dfrac{1}{4}\\ c,x^2-\left(x-3\right)\left(2x-5\right)=9\\ =>x^2-2x^2+6x+5x-15=9\\ =>-x^2+11-15-9=0\\ =>-x^2+11x-24=0\\ =>-x^2+8x+3x-24=0\\ =>-x\left(x-8\right)+3\left(x-8\right)=0\\ =>\left(3-x\right)\left(x-8\right)=0\\ =>\left[{}\begin{matrix}3-x=0\\x-8=0\end{matrix}\right.=>\left[{}\begin{matrix}x=3\\x=8\end{matrix}\right.\)
Bài 1:Tính hợp lí
a)-12,5+17,55-3,5+2,45
b)0,175-(\(2\dfrac{1}{3}\)+0,175)
c)\(\dfrac{5}{13}\).\(\dfrac{-3}{10}\)+\(\dfrac{3}{10}\).\(\dfrac{-8}{13}\)+(-0,7)
Bài 2:Tìm x biết
a)x+\(\dfrac{2}{5}\)=2,4
b)2x-\(\dfrac{4}{5}\)=-1,5
c)11-(15+11)=x-(25-9)
Bài 3:Cho A=\(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+\(\dfrac{1}{4^2}\)+\(\dfrac{1}{5^2}\)+....+\(\dfrac{1}{100^2}\)
Chứng tỏ A<1
2:
a: x=2,4-0,4=2
b: =>2x=-1,5+0,8=-0,7
=>x=-0,35
c: =>x-16=-15
=>x=1
Tìm x, biết
a,(2x-1)2 -25 = 0
b,8x3 -50x = 0
`@` `\text {Ans}`
`\downarrow`
`a,`
`(2x - 1)^2 - 25 = 0`
`<=> (2x - 1)^2 = 25`
`<=> (2x - 1)^2 = (+-5)^2`
`<=>`\(\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}2x=6\\2x=-4\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy, `S = {-2; 3}`
`b,`
`8x^3 - 50x = 0`
`<=> x(8x^2 - 50) = 0`
`<=>`\(\left[{}\begin{matrix}x=0\\8x^2-50=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=0\\8x^2=50\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=0\\x^2=\dfrac{25}{4}\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=0\\x=\pm\dfrac{5}{2}\end{matrix}\right.\)
Vậy, `S = {-5/2; 0; 5/2}.`
a) (2x - 1)² - 25 = 0
(2x - 1)² - 5² = 0
(2x - 1 - 5)(2x - 1 + 5) = 0
(2x - 6)(2x + 4) = 0
2x - 6 = 0 hoặc 2x + 4 = 0
*) 2x - 6 = 0
2x = 6
x = 3
*) 2x + 4 = 0
2x = -4
x = -2
Vậy x = -2; x = 3
b) 8x³ - 50x = 0
2x(4x² - 25) = 0
2x[(2x)² - 5²] = 0
2x(2x - 5)(2x + 5) = 0
2x = 0 hoặc 2x - 5 = 0 hoặc 2x + 5 = 0
*) 2x = 0
x = 0
*) 2x - 5 = 0
2x = 5
x = 5/2
*) 2x + 5 = 0
2x = -5
x = -5/2
Vậy x = -5/2; x = 0; x = 5/2
tìm x , biết
a) 17/6- x( x-7/6)= 7/4
b) 3/35 - ( 3/5-x)= 2/7
tìm x thuộc Z , biết
3/4-5/6 < x/12 < 1 -( 2/3-1/4)
tìm x biết
a ) 2x-3=x + 1/2
b) 4x- ( x+ 1/2) = 2x - ( 1/2 - 5 )
Bài 1:
a) Ta có: \(\dfrac{17}{6}-x\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)
\(\Leftrightarrow\dfrac{17}{6}-x^2+\dfrac{7}{6}x-\dfrac{7}{4}=0\)
\(\Leftrightarrow-x^2+\dfrac{7}{6}x+\dfrac{13}{12}=0\)
\(\Leftrightarrow-12x^2+14x+13=0\)
\(\Delta=14^2-4\cdot\left(-12\right)\cdot13=196+624=820\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{14-2\sqrt{205}}{-24}=\dfrac{-7+\sqrt{205}}{12}\\x_2=\dfrac{14+2\sqrt{2015}}{-24}=\dfrac{-7-\sqrt{205}}{12}\end{matrix}\right.\)
b) Ta có: \(\dfrac{3}{35}-\left(\dfrac{3}{5}-x\right)=\dfrac{2}{7}\)
\(\Leftrightarrow\dfrac{3}{5}-x=\dfrac{3}{35}-\dfrac{10}{35}=\dfrac{-7}{35}=\dfrac{-1}{5}\)
hay \(x=\dfrac{3}{5}-\dfrac{-1}{5}=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\)
Bài 3:
a) Ta có: \(2x-3=x+\dfrac{1}{2}\)
\(\Leftrightarrow2x-x=\dfrac{1}{2}+3\)
\(\Leftrightarrow x=\dfrac{7}{2}\)
b) Ta có: \(4x-\left(x+\dfrac{1}{2}\right)=2x-\left(\dfrac{1}{2}-5\right)\)
\(\Leftrightarrow3x-\dfrac{1}{2}-2x+\dfrac{1}{2}-5=0\)
\(\Leftrightarrow x=5\)
tìm x biết
a) 17-2.x=9U
b)145-135.(x-2)2=10
c)x ϵ Ư (36) và x > 12
d) x - 1 ϵ B (9) và 25 < x < 50
a: 17-2x=9
=>2x=17-9=8
=>x=8/2=4
b: \(145-135\left(x-2\right)^2=10\)
=>\(135\cdot\left(x-2\right)^2=135\)
=>\(\left(x-2\right)^2=1\)
=>\(\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
c: \(x\inƯ\left(36\right)\)
=>\(x\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;9;-9;12;-12;18;-18;36;-36\right\}\)
mà x>12
nên \(x\in\left\{18;36\right\}\)
d: \(x-1\in B\left(9\right)\)
=>\(x-1\in\left\{0;9;18;27;36;45;54;...\right\}\)
=>\(x\in\left\{1;10;19;28;37;46;55;...\right\}\)
mà 25<x<50
nên \(x\in\left\{28;37;46\right\}\)
tìm x biết
a,2x+3(x-1)(x+1)=5x(x+1)
b,,(8-5x)(x+2)+4(x-2)(x+1)=(2+x)(2-x)
c,, 4(x-1)(x+5)-(x+2)(x+5)=3(x-1)(x+2)
Lời giải:
a. $2x^2+3(x-1)(x+1)=5x(x+1)$
$\Leftrightarrow 2x^2+3x^2-3=5x^2+5x$
$\Leftrightarrow 5x^2-3=5x^2+5x$
$\Leftrightarrow 5x=-3$
$\Leftrightarrow x=\frac{-3}{5}$
b.
PT $\Leftrightarrow (-5x^2-2x+16)+4(x^2-x-2)=4-x^2$
$\Leftrightarrow -x^2-6x+8=4-x^2$
$\Leftrightarrow -6x+8=4$
$\Leftrightarrow -6x=-4$
$\Leftrightarrow x=\frac{2}{3}$
c.
PT $\Leftrightarrow 4(x^2+4x-5)-(x^2+7x+10)=3(x^2+x-2)$
$\Leftrightarrow 4x^2+16x-20-x^2-7x-10=3x^2+3x-6$
$\Leftrightarrow 3x^2+9x-30=3x^2+3x-6$
$\Leftrightarrow 6x=24$
$\Leftrightarrow x=4$
Bài 1: Cặp phân số sau có bằng nhau không?
a) -4/3 và 12/9
b) -2/3 và -6/8
Bài 2: Tìm x,y biết
a)x/-3=2/y
b) x/-9=-8/y=-10/15
Bài 3: Rút gọn
a) -24/78
b)19.25/28.95
c) 19-19.8/8-27
Bài 4: So sánh
a) -2/3 và 5/-8
b) 398/-412 và -25/-137
c) -14/21 và 60/72
Bài 5: a) Cho A= 5/n-3 Tìm điều kiện của n để A là phân số
b) Cho B= 2n+7/n+3
Tìm giá trị của n để B là sô nguyên
1:
a: Vì \(\dfrac{-4}{3}=\dfrac{-4\cdot3}{3\cdot3}=\dfrac{-12}{9}=\dfrac{12}{9}\\ \Rightarrow\dfrac{-4}{3}=\dfrac{12}{9}\)
b: Vì : \(-2\cdot3=-6\\ -6\cdot8=-48\)
nên 2 p/s ko bằng nhau
1. tìm x biết
a, (2x - 3)\(^2\) = |3 - 2x|
b, (x - 1)\(^2\) + (2x - 1)\(^2\) = 0
c, 5 - x\(^2\) = 1
d, x - 2\(\sqrt{x}\) = 0
g, (x - 1) + \(\dfrac{1}{7}\) = 0
`#3107.101107`
`1.`
`a,`
`(2x - 3)^2 = |3 - 2x|`
`=> (2x - 3)^2 = |2x - 3|`
`=>`\(\left[{}\begin{matrix}2x-3=\left(2x-3\right)^2\\2x-3=-\left(2x-3\right)^2\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}2x-3-\left(2x-3\right)^2=0\\2x-3+\left(2x-3\right)^2=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}\left(2x-3\right)\left(1-2x+3\right)=0\\\left(2x-3\right)\left(1+2x-3\right)=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}2x-3=0\\4-2x=0\\2x-2=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=2\\x=1\end{matrix}\right.\)
Vậy, `x \in {3/2; 2; 1}`
`b,`
`(x - 1)^2 + (2x - 1)^2 = 0`
`=>`\(\left[{}\begin{matrix}\left(x-1\right)^2=0\\\left(2x-1\right)^2=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x-1=0\\2x-1=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=1\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy, `x \in {1; 1/2}`
`c,`
`5 - x^2 = 1`
`=> x^2 = 4`
`=> x^2 = (+-2)^2`
`=> x = +-2`
Vậy, `x \in {-2; 2}`
`d,`
`x - 2\sqrt{x} = 0`
`=> x^2 - (2\sqrt{x})^2 = 0`
`=> x^2 - 4x = 0`
`=> x(x - 4) = 0`
`=>`\(\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
Vậy, `x \in {0; 4}`
`g,`
`(x - 1) + 1/7 = 0`
`=> x - 1 + 1/7 = 0`
`=> x - 6/7 = 0`
`=> x = 6/7`
Vậy, `x = 6/7.`