Với x ≥ 0, x ≠ 9, cho các biểu thức:
P = 2 x x + 3 + x x - 3 - 3 x + 3 x - 9 và Q = x + 1 x - 3
a, Tính giá trị của Q tại x = 7 - 4 3
b, Rút gọn P
c, Tìm x để M ≥ - 2 3 biết M = P Q
d, Đặt A = x . M + 4 x + 7 x + 3 . Tìm giá trị nhỏ nhất của A
Cho biểu thức:
P = \(\left(\dfrac{4\sqrt{x}}{2+\sqrt{x}}+\dfrac{8x}{4-x}\right):\left(\dfrac{\sqrt{x}-1}{x-2\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\left(x>0,x\ne4,x\ne9\right)\)
a) Rút gọn P
b) Với \(x>9\), tìm GTNN của P
a) \(P=\left(\dfrac{4\sqrt{x}}{\sqrt{x}+2}+\dfrac{8x}{4-x}\right):\left(\dfrac{\sqrt{x}-1}{x-2\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\)
\(P=\left(\dfrac{4\sqrt{x}}{\sqrt{x}+2}-\dfrac{8x}{x-4}\right):\left[\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{2\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\right]\)
\(P=\left[\dfrac{4\sqrt{x}}{\sqrt{x}+2}-\dfrac{8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right]:\dfrac{\sqrt{x}-1-2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(P=\left[\dfrac{4\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\dfrac{8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right]:\dfrac{-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(P=\dfrac{4x-8\sqrt{x}-8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\dfrac{-\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(P=\dfrac{-4x-8\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\dfrac{-\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(P=\dfrac{-4\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{-\left(\sqrt{x}-3\right)}\)
\(P=\dfrac{-4\sqrt{x}\cdot\sqrt{x}}{-\left(\sqrt{x}-3\right)}\)
\(P=\dfrac{4x}{\sqrt{x}-3}\)
b) \(P=\dfrac{4x}{\sqrt{x}-3}\)
\(P=4\left(\sqrt{x}-3\right)+\dfrac{36}{\sqrt{x}-3}+24\)
Theo BĐT côsi ta có:
\(P\ge\sqrt{\dfrac{4\left(\sqrt{x}-3\right)\cdot36}{\sqrt{x}-3}}+24=36\)
Vậy: \(P_{min}=36\Leftrightarrow x=36\)
Cho 0< x,y <1 thỏa mãn x/(1-x) + y/(1-y) = 1. Tính giá trị biểu thức:
P = x + y + √( x^2 - xy + y^2 )
Rút gọn biểu thức:
P=\(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\)với x\(\ge\)0 và x\(\ne\)1
Ta có: \(P=\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\)
\(=\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{x-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{2x+1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)
Cho biểu thức:P=(x+9/x^2-3/x^2+3x).x-3/x+3
a,Tìm x biểu diễn biểu thức P
b,Rút gọn P
giúp mk nha
Cho biểu thức:P=(x+9/x^2-9-3/x^2+3x).x-3/x+3
a,Tìm x cho biểu thức P
b,Rút gọn P
giúp mk nha
a. Để P được xđ thì MT phải khác 0.
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-9\ne0\\x^2+3x\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-3\right)\left(x+3\right)\ne0\\x\left(x+3\right)\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\pm3\\x\ne0\end{matrix}\right.\)
b. \(P=\left(\dfrac{x+9}{x^2-9}-\dfrac{3}{x^2+3x}\right).\dfrac{x-3}{x+3}\)
\(P=\left(\dfrac{x+9}{\left(x-3\right)\left(x+3\right)}-\dfrac{3}{x\left(x+3\right)}\right).\dfrac{x-3}{x+3}\)
\(P=\left(\dfrac{x\left(x+9\right)}{x\left(x-3\right)\left(x+3\right)}-\dfrac{3\left(x-3\right)}{x\left(x+3\right)\left(x-3\right)}\right).\dfrac{x-3}{x+3}\)
\(P=\dfrac{x^2+9x-3x+9}{x\left(x-3\right)\left(x+3\right)}.\dfrac{x-3}{x+3}\)
\(P=\dfrac{\left(x+3\right)^2}{x\left(x-3\right)\left(x+3\right)}.\dfrac{x-3}{x+3}\)
\(P=\dfrac{1}{x}\)
1) Rút gọn biểu thức:
P = \(\left(\dfrac{1}{x+3\sqrt{x}}-\dfrac{1}{\sqrt{x}+3}\right):\dfrac{\sqrt{x}-1}{x+6\sqrt{x}+9}+1\) với x > 0 ; x ≠ 1
2) Tìm m để 2 đường thẳng y = 2x + m và y = x + m - 3 cắt nhau tại một điểm thuộc trục hoành
1: \(P=\dfrac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}\cdot\dfrac{\left(\sqrt{x}+3\right)^2}{-\left(1-\sqrt{x}\right)}+1\)
\(=\dfrac{-\sqrt{x}-3+\sqrt{x}}{\sqrt{x}}=-\dfrac{3}{\sqrt{x}}\)
2.
Hai đường thẳng cắt nhau tại 1 điểm thuộc trục hoành khi và chỉ khi:
\(-\dfrac{m}{2}=3-m\)
\(\Leftrightarrow m=6\)
1.cho x > 0. tìm GTNN của A = \(\dfrac{3x^4+16}{x^3}\)
2. cho x,y,z > 0 thỏa mãn x+y+z=2. tìm GTNN của biểu thức:
P=\(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\)
giúp mình với ạ, mình đang cần gấp trong tối nay ạ.
kẻ lười biếng nạp card, đi ô tô
Cho biểu thức:
P= (\(\dfrac{3x-4}{4-x}\) + \(\dfrac{\sqrt{x}}{\sqrt{x}-2}\) - \(\dfrac{2\sqrt{x}-2}{3\sqrt{x}}\)) với x > 0; x ≠ 4
a) Rút gọn P
b) Tìm x để P > -1
c) Tìm giá trị của x để P có giá trị là số nguyên
Câu 1:
1.Rút gọn biểu thức:
P=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\),với x>0;x\(\ne\)1
\(=>P=\left[\dfrac{\sqrt{x}.\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right]:\left[\dfrac{\sqrt{x}-1+2}{x-1}\right]\)
\(P=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+1}{x-1}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}:\dfrac{1}{\sqrt{x}-1}=\dfrac{x-1}{\sqrt{x}}\)
Ta có: \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)
\(=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}-1+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}\cdot\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)
\(=\dfrac{x-1}{\sqrt{x}}\)
\(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)
\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)
\(=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}-1+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}}:\dfrac{1}{\sqrt{x}-1}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}.\left(\sqrt{x}-1\right)=\dfrac{x-1}{\sqrt{x}}\)
Cho biểu thức:
P=\(\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\left(\dfrac{1-x}{\sqrt{2}}\right)^2\)
a) Rút gọn P
b) Tìm x để P>0