Chứng minh rằng nếu a/b =c/d thì a/b=a+c/b+d
a)Chứng minh rằng nếu a^4 +b^4 +c^4 +d^4 =4abcd và a,b,c,d là các số dương thì a =b=c=d
b)Chứng minh rằng nếu m= a+ b +c thì (am+ bc )(bm+ac)(cm+ab)= (a+b)^2 (a+c )^2 (b+c)^2
b, Ta có \(m=a+b+c\)
\(\Rightarrow am+bc=a\left(a+b+c\right)+bc=a\left(a+b\right)+ac+bc=\left(a+c\right)\left(a+b\right)\)
CMTT \(bm+ac=\left(b+c\right)\left(b+a\right)\);\(cm+ab=\left(c+a\right)\left(c+b\right)\)
Suy ra \(\left(am+bc\right)\left(bm+ac\right)\left(cm+ab\right)=\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2\)
Chứng minh rằng nếu a+b/b+c =c+d/d+a (c+d khác 0) thì a=c và a+b+c+d=0
Chứng minh rằng nếu:
(a + b + c + d) (a - b - c + d) = (a - b + c - d) (a + b - c - d)
thì\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)
(a, b, c, d khác 0)
Ta có: \(\left(a+b+c+d\right)\left(a-b-c+d\right)=\left(a-b+c-d\right)\left(a+b-c-d\right)\)
\(\Leftrightarrow\left(a+d\right)^2-\left(b+c\right)^2=\left(a-d\right)^2-\left(b-c\right)^2\)
\(\Leftrightarrow\left(a+d-a+d\right)\left(a+d+a-d\right)=\left(b+c-b+c\right)\left(b+c+b-c\right)\)
\(\Leftrightarrow2d\cdot2a=2c\cdot2b\)
\(\Leftrightarrow ad=bc\)
hay \(\dfrac{a}{c}=\dfrac{b}{d}\)
Chứng minh rằng: Nếu a/b = c/d thì a/b = a+c/b+d = a-c/b-d (b khác d)
Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\)
\(\Rightarrow\frac{a}{b}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\)
Chứng minh rằng nếu: a/b= c/d thì
a+b/a-b= c+d/c-d
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk,c=dk\)
\(\cdot\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\left(1\right)\)
\(\cdot\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\)\(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Chúc bạn học tốt!!! k cho mk nha !!
Thấy đúng thì chọn cho mk nha
Chứng minh rằng: Nếu \(\dfrac{a}{b}=\dfrac{c}{d}\) thì \(\dfrac{a-b}{a+b}=\dfrac{c-d}{c+d}\)
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng t/c dtsbn:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}=\dfrac{a+b}{c+d}\)
\(\Rightarrow\dfrac{a-b}{c-d}=\dfrac{a+b}{c+d}\Rightarrow\dfrac{a-b}{a+b}=\dfrac{c-d}{c+d}\)
cho a+5/a-5=b+6/b-6. Chứng minh rằng: a/b=5/6.
Chứng minh rằng nếu: a/b=c/d thì a^2+b^2/c^2+d^2=ab/cd
a: \(\dfrac{a+5}{a-5}=\dfrac{b+6}{b-6}\)
=>(a+5)(b-6)=(a-5)(b+6)
=>ab-6a+5b-30=ab+6a-5b-30
=>-6a+5b=6a-5b
=>-12a=-10b
=>6a=5b
=>\(\dfrac{a}{b}=\dfrac{5}{6}\)
b: Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>\(a=bk;c=dk\)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\dfrac{b^2}{d^2}\)
\(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2}\)
Do đó: \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\)
chứng minh rằng nếu a+b/c+d=b+c/d+a với a+b+c+d khác 0 thì a=c
\(\frac{a+b}{c+d}=\frac{b+c}{d+a}\)
<=>\(\frac{a+b}{c+d}+1=\frac{b+c}{d+a}+1\)
<=> \(\frac{a+b+c+d}{c+d}=\frac{a+b+c+d}{d+a}\)
<=> \(\frac{a+b+c+d}{c+d}-\frac{a+b+c+d}{d+a}=0\)
<=> \(\left(a+b+c+d\right)\left(\frac{1}{c+d}-\frac{1}{d+a}\right)=0\)
<=> \(\orbr{\begin{cases}a+b+c+d=0\\\frac{1}{c+d}-\frac{1}{d+a}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a+b+c+d=0\\c=a\end{cases}\left(đpcm\right)}}\)
chứng minh rằng: nếu a/b=c/d khác 1 thì (a+b)/(a-b)=(c+d)/(c-d) với a,b,c,d khác 0
Đặt = t => a = bt ; c = dt thay vào từng vế
Đặt a/b=c/d= t suy ra a=bt; c=dt
(a+b)/(a-b)= bt+b/bt-b = b(t+1)/b(t-1)=t+1/t-1 (1)
(c+d)/(c-d)= dt+d/dt-d = d(t+1)/d(t-1)=t+1/t-1 (2)
Từ (1) và (2) suy ra (a+b)/(a-b)= (c+d)/(c-d)