\(\frac{a}{b}=\frac{c}{d}=k\Leftrightarrow a=bk;c=dk\)
\(VT=\frac{a}{b}=\frac{bk}{b}=\frac{dk}{d}=k\Leftrightarrow VP=\frac{a+c}{b+d}=\frac{bk+dk}{b+d}=\frac{k\left(b+d\right)}{b+d}=k\)
\(Vậy\) \(VP=VT\RightarrowĐPCM\)
\(\frac{a}{b}=\frac{c}{d}=k\Leftrightarrow a=bk;c=dk\)
\(VT=\frac{a}{b}=\frac{bk}{b}=\frac{dk}{d}=k\Leftrightarrow VP=\frac{a+c}{b+d}=\frac{bk+dk}{b+d}=\frac{k\left(b+d\right)}{b+d}=k\)
\(Vậy\) \(VP=VT\RightarrowĐPCM\)
Cho hai phân số a/b và c/d (a,b,c,d > 0). Chứng minh rằng nếu a/b > c/d thì b/a < d/c
Cho hai phân số a/b và c/d ( a,b,c,d > 0 ) . Chứng minh rằng nếu a/b > c/d thì b/a<d/c
cho các số nguyên a,b,c,d (a>b>c>d>0)
Chứng minh rằng nếu a/b=c/d thì a+d>b+c
Cho các số nguyên a,b,c,d thỏa mãn a>b>c>d>0. Chứng minh rằng nếu a/b=c/d thì a+d>b+c
Chứng minh rằng: Nếu \(\frac{a+b}{b+c}=\frac{c+d}{d+a}\) thì a =c hoặc a+b+c+d =0
cho a, b, c, d thuộc Z và b > 0 ; d > 0 . chứng minh rằng
a)nếu a/b = c/d thì ad=cb và ngược lại
b) nếu a/b >c/d thì ad > cb và ngược lại
c) nếu a/b < c/d thì ad < cb và ngược lại
Cho 2 phân số a/b và c/b (a,b,c,d là các số nguyên dương).
Chứng minh rằng nếu a/b<c/d thì b/a>d/c
cho a,b,c,d thuộc Z; a>b>c>d>0.Chứng minh rằng nếu \(\frac{a}{b}=\frac{c}{d}\)thì a+d>b+c
Cho các số nguyên a,b,c,d ( a > b > c > d > 0). Chứng minh rằng nếu \(\frac{a}{b}=\frac{c}{d}\)thì a + d > b + c