Cho tanx = 2. Tính B = cos 2 x + sin 2 x + 1 2 s i n 2 x + c o s 2 x + 2
A. 1
B. 7 10
C. 10 19
D. 1 2
cho tanx=2 tính Q=\(\dfrac{\sin^3x}{2\sin x+\cos^3x}\)
tan x=2
=>\(\dfrac{sinx}{cosx}=2\)
=>sin x và cosx cùng dấu và \(sinx=2\cdot cosx\)
\(1+tan^2x=\dfrac{1}{cos^2x}\)
=>\(\dfrac{1}{cos^2x}=1+4=5\)
=>\(cos^2x=\dfrac{1}{5}\)
=>\(\left[{}\begin{matrix}cosx=\dfrac{1}{\sqrt{5}}\\cosx=-\dfrac{1}{\sqrt{5}}\end{matrix}\right.\)
TH1: \(cosx=\dfrac{1}{\sqrt{5}}\)
=>\(sinx=\sqrt{1-cos^2x}=\dfrac{2}{\sqrt{5}}\)
TH2: cosx=-1/căn 5
=>\(sinx=-\sqrt{1-cos^2x}=-\dfrac{2}{\sqrt{5}}\)
\(Q=\dfrac{sin^3x}{2sinx+cos^3x}\)
\(=\dfrac{\left(2\cdot cosx\right)^3}{2\cdot2cosx+cos^3x}\)
\(=\dfrac{8\cdot cos^3x}{4cosx+cos^3x}=\dfrac{8cos^2x}{4+cos^2x}\)
\(=\dfrac{8\cdot\dfrac{1}{5}}{4+\dfrac{1}{5}}=\dfrac{8}{5}:\dfrac{21}{5}=\dfrac{8}{21}\)
chứng minh rằng
a) tanx(cot\(^2\)x - 1) = cotx(1 - tan\(^2\)x)
b) tan\(^2\)x - sin\(^2\)x = tan\(^2\)x.sin\(^2\)x
c) \(\dfrac{cos^2x-sin^2x}{cot^2x-tan^2x}\) - cos\(^2\)x = - cos\(^4\)x
a: tan x(cot^2x-1)
\(=\dfrac{1}{cotx}\left(cot^2x-cotx\cdot tanx\right)\)
=cotx-tanx/cotx=cotx(1-tan^2x)
b: \(tan^2x-sin^2x=\dfrac{sin^2x}{cos^2x}-sin^2x\)
\(=sin^2x\left(\dfrac{1}{cos^2x}-1\right)=sin^2x\cdot\dfrac{sin^2x}{cos^2x}=sin^2x\cdot tan^2x\)
c: \(\dfrac{cos^2x-sin^2x}{cot^2x-tan^2x}=\dfrac{cos^2x-sin^2x}{\dfrac{cos^2x}{sin^2x}-\dfrac{sin^2x}{cos^2x}}\)
\(=\left(cos^2x-sin^2x\right):\dfrac{cos^4x-sin^4x}{sin^2x\cdot cos^2x}\)
\(=\dfrac{sin^2x\cdot cos^2x}{1}=sin^2x\cdot cos^2x\)
=>sin^2x*cos^2x-cos^2x=cos^2x(sin^2x-1)
=-cos^2x*cos^2x=-cos^4x
=>ĐPCM
cho tanx-cotx=m
Tính A= \(\sqrt{\dfrac{1}{sin\left(x\right)^2}+\dfrac{1}{cos\left(x\right)^2}-9}\)
Ta có \(\tan x-\cot x=m\) \(\Leftrightarrow\tan^2x+\cot^2x=m+1\)
\(\Leftrightarrow\dfrac{1}{\cos^2x}-1+\dfrac{1}{\sin^2x}-1=m+1\)
\(\Leftrightarrow A=\sqrt{\dfrac{1}{\sin^2x}+\dfrac{1}{\cos^2x}-9}=\sqrt{m-6}\)
1. Cho sinx = \(\dfrac{2}{3}\) , x ∈ (0,\(\dfrac{\Pi}{2}\))
Tính cosx, tanx , sin (x+\(\dfrac{\Pi}{4}\))
2. Cho cos = \(\dfrac{1}{4}\) . Tính sinx, cos2x
3. Cho tanx = 2 . Tính cosx, sinx
x ∈ (0,\(\dfrac{\Pi}{2}\))
4. Rút gọn a) A = cos2x - 2cos2x + sinx +1
b) B = \(\dfrac{cos3x+cos2x+cosx}{cos2x}\)
1.
\(0< x< \dfrac{\pi}{2}\Rightarrow cosx>0\)
\(\Rightarrow cosx=\sqrt{1-sin^2x}=\dfrac{\sqrt{5}}{3}\)
\(tanx=\dfrac{sinx}{cosx}=\dfrac{2}{\sqrt{5}}\)
\(sin\left(x+\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{2}\left(sinx+cosx\right)=\dfrac{\sqrt{10}+2\sqrt{2}}{6}\)
2.
Đề bài thiếu, cos?x
Và x thuộc khoảng nào?
3.
\(x\in\left(0;\dfrac{\pi}{2}\right)\Rightarrow sinx;cosx>0\)
\(\dfrac{1}{cos^2x}=1+tan^2x=5\Rightarrow cos^2x=\dfrac{1}{5}\Rightarrow cosx=\dfrac{\sqrt{5}}{5}\)
\(sinx=cosx.tanx=\dfrac{2\sqrt{5}}{5}\)
4.
\(A=\left(2cos^2x-1\right)-2cos^2x+sinx+1=sinx\)
\(B=\dfrac{cos3x+cosx+cos2x}{cos2x}=\dfrac{2cos2x.cosx+cos2x}{cos2x}=\dfrac{cos2x\left(2cosx+1\right)}{cos2x}=2cosx+1\)
1) chứng minh:
sin^4 x + sin^2 x * cos^2 x + 3cos^2 x =1+2 sin^ 2 x|
2) cho sinx * cosx =√3/4, tính sinx, cosx, tanx, cotx
em cần gấp trc 7h ạ nên giúp em vs
2: \(\left(sinx+cosx\right)^2=1+2\cdot sinx\cdot cosx=1+2\cdot\dfrac{\sqrt{3}}{4}=1+\dfrac{\sqrt{3}}{2}=\dfrac{2+\sqrt{3}}{2}\)
=>\(sinx+cosx=\dfrac{\sqrt{3}+1}{2}\)
mà sin x*cosx=căn 3/4
nên sinx,cosx là các nghiệm của phương trình là:
\(a^2-\dfrac{\sqrt{3}+1}{2}\cdot a+\dfrac{\sqrt{3}}{4}=0\)
=>\(\left[{}\begin{matrix}a=\dfrac{\sqrt{3}}{2}\\a=\dfrac{1}{2}\end{matrix}\right.\)
Ta sẽ có hai trường hợp:
TH1: sin x=căn 3/2; cosx=1/2
tan x=sinx/cosx=căn 3
cot x=1/căn 3
TH2: sin x=1/2; cosx=căn 3/2
tan x=sin x/cosx=1/căn 3
cot x=1:1/căn 3=căn 3
cho Tanx =2 .Tìm Sin X Cos X cotgX
Vẽ ΔABC vuông tại A có \(x=\widehat{B}\)
Ta có: \(\tan x=\tan\widehat{B}=\frac{AC}{AB}\)
mà \(\tan x=2\)
nên \(\frac{AC}{AB}=2\)
hay \(AC=2\cdot AB\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=AB^2+\left(2\cdot AB\right)^2=5\cdot AB^2\)
hay \(BC=AB\cdot\sqrt{5}\)
Xét ΔABC vuông tại A có \(\sin x=\sin\widehat{B}=\frac{AC}{BC}=\frac{2\cdot AB}{\sqrt{5}\cdot AB}=\frac{2}{\sqrt{5}}=\frac{2\sqrt{5}}{5}\)
\(\cos x=\cos\widehat{B}=\frac{AB}{BC}=\frac{AB}{\sqrt{5}\cdot AB}=\frac{1}{\sqrt{5}}=\frac{\sqrt{5}}{5}\)
\(\cot x=\cot\widehat{B}=\frac{1}{\tan x}=\frac{1}{2}\)
Sin2 x. tanx + cos2 x= cos2x .( 2 - tanx)
Giải các Phương trình sau
a) \(sin^4\frac{x}{2}+cos^4\frac{x}{2}=\frac{1}{2}\)
b) \(sin^6x+cos^6x=\frac{7}{16}\)
c) \(sin^6x+cos^6x=cos^22x+\frac{1}{4}\)
d) \(tanx=1-cos2x\)
e) \(tan(2x+\frac\pi3).tan(\frac\pi3-x)=1\)
f) \(tan(x-15^o).cot(x+15^o)=\frac{1}{3}\)
a.
\(\left(sin^2\dfrac{x}{2}+cos^2\dfrac{x}{2}\right)^2-2sin^2\dfrac{x}{2}cos^2\dfrac{x}{2}=\dfrac{1}{2}\)
\(\Leftrightarrow2-\left(2sin\dfrac{x}{2}cos\dfrac{x}{2}\right)^2=1\)
\(\Leftrightarrow1-sin^2x=0\)
\(\Leftrightarrow cos^2x=0\)
\(\Leftrightarrow x=\dfrac{\pi}{2}+k\pi\)
b.
\(\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)=\dfrac{7}{16}\)
\(\Leftrightarrow1-\dfrac{3}{4}\left(2sinx.cosx\right)^2=\dfrac{7}{16}\)
\(\Leftrightarrow16-12.sin^22x=7\)
\(\Leftrightarrow3-4sin^22x=0\)
\(\Leftrightarrow3-2\left(1-cos4x\right)=0\)
\(\Leftrightarrow cos4x=-\dfrac{1}{2}\)
\(\Leftrightarrow4x=\pm\dfrac{2\pi}{3}+k2\pi\)
\(\Leftrightarrow x=\pm\dfrac{\pi}{6}+\dfrac{k\pi}{2}\)
c.
\(\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)=cos^22x+\dfrac{1}{4}\)
\(\Leftrightarrow1-\dfrac{3}{4}\left(2sinx.cosx\right)^2=cos^22x+\dfrac{1}{4}\)
\(\Leftrightarrow3-3sin^22x=4cos^22x\)
\(\Leftrightarrow3=3\left(sin^22x+cos^22x\right)+cos^22x\)
\(\Leftrightarrow3=3+cos^22x\)
\(\Leftrightarrow cos2x=0\)
\(\Leftrightarrow x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)
Góc nhọn x có tanx = 3/5
Tính N = (sinx . cosx)/(sin2x - cos2x)
\(\tan x=\frac{\sin x}{\cos x}=\frac{3}{5}\Rightarrow\sin x=\frac{3}{5}\cos x\)
\(\Rightarrow N=\frac{\sin x.\cos x}{\sin^2x-\cos^2x}=\frac{\sin x.\cos x}{\left(\sin x-\cos x\right)\left(\sin x+\cos x\right)}\)
\(=\frac{\frac{3}{5}.\cos^2x}{\left(\frac{3}{5}\cos x-\cos x\right)\left(\frac{3}{5}\cos x+\cos x\right)}=\frac{\frac{3}{5}\cos^2x}{\frac{-16}{25}.\cos^2x}=\frac{-15}{16}\)