Đơn giản biểu thức A = (1 - sin 2 x ) c o t 2 x + (1 - c o t 2 x ), ta có:
A. A = - cos 2 x
B. A = cos 2 x
C. A = sin 2 x
D. A = - sin 2 x
Đơn giản các biểu thức sau(giả sử các biểu thức sau đều có nghĩa)
a) $A=\sin \left(90^{\circ}-x\right)+\cos \left(180^{\circ}-x\right)+\sin ^{2} x\left(1+\tan ^{2} x\right)-\tan ^{2} x$.
b) $B=\dfrac{1}{\sin x} \cdot \sqrt{\dfrac{1}{1+\cos x}+\dfrac{1}{1-\cos x}}-\sqrt{2}$.
1234567890-01234567890-=qưertyuiop[]\';;lkjhfgdsazxcvbnm,./\'l;[]7894561230.+-
Rút gọn đơn giản biểu thức A = cos(x-π/2)+sin(x-π)
B = cos (5π/2-x) + sin(9π/2-x) -cos(15π/2+x) -sin(35π/2+x)
\(A=\cos\left(\text{π}-\dfrac{x}{2}\right)-\sin\left(\text{π}-x\right)\)
\(=\sin x+\sin x=2\cdot\sin x\)
\(B=\cos\left(2\text{π}+\dfrac{\text{π}}{2}-x\right)+\sin\left(4\text{π}+\dfrac{\text{π}}{2}-x\right)-\cos\left(6\text{π}+\dfrac{3}{2}\text{π}+x\right)-\sin\left(16\text{π}+\dfrac{3}{2}\text{π}+x\right)\)
\(=\sin x+\cos x-\cos\left(\dfrac{3}{2}\text{π}+x\right)-\sin\left(\dfrac{3}{2}\text{π}+x\right)\)
\(=\sin x+\cos x-\cos\left(\text{π}+\dfrac{\text{π}}{2}+x\right)-\sin\left(\text{π}+\dfrac{\text{π}}{2}+x\right)\)
\(=\cos x+\sin x+\cos\left(\dfrac{1}{2}\text{π}+x\right)+\sin\left(\dfrac{1}{2}\text{π}+x\right)\)
\(=\cos x+\sin x-\sin x+\cos x=2\cos x\)
Đơn giản các biểu thức sau:
a) sin a.\(\sqrt{1+tan^2a}\)
b) \(\frac{1-cos^2x}{1-sịn^2x}+tanx.cotx\)
c) \(\frac{1-4sin^2x.cos^2x}{\left(sinx+cosx\right)^2}\)
d) sin(90o-x)+cos(1800-x)+sin2x(1+tan2x)-tan2x
\(sina\sqrt{1+\frac{sin^2a}{cos^2a}}=sina\sqrt{\frac{cos^2a+sin^2a}{cos^2a}}=\frac{sina}{\left|cosa\right|}=\pm tana\)
\(\frac{1-cos^2x}{1-sin^2x}+tanx.cotx=\frac{sin^2x}{cos^2x}+\frac{sinx}{cosx}.\frac{cosx}{sinx}=tan^2x+1=\frac{1}{cos^2x}\)
\(\frac{1-4sin^2xcos^2x}{\left(sinx+cosx\right)^2}=\frac{\left(1-2sinx.cosx\right)\left(1+2sinx.cosx\right)}{sin^2x+cos^2x+2sinx.cosx}=\frac{\left(1-sin2x\right)\left(1+2sinx.cosx\right)}{1+2sinx.cosx}=1-2sinx\)
\(sin\left(90-x\right)+cos\left(180-x\right)+sin^2x\left(1+tan^2x\right)-tan^2x\)
\(=cosx-cosx+sin^2x.\frac{1}{cos^2x}-tan^2x=tan^2x-tan^2x=0\)
BÀI 1 :cho tam giác ABC vuông tại A có AB=4cm BC=6cm. tính tỉ số lượng giác của các góc B và C
BÀI 2 :đơn giản các biểu thức
a)\(A=\cos^2x+\cos^2x.\cot g^2x\)
b)\(sin^2x+\sin^2x.\tan^2x\)
c)\(\dfrac{2cos^2x-1}{\sin x+\cos x}\)
d)\(\dfrac{\cos x}{1+\sin x}+\tan x\)
Đơn giản biểu thức
a) \(G=\left(1-\sin^2\alpha\right)\cot^2\alpha+1-\cot^2\alpha\)
b) \(E=\dfrac{1-\sin^2\alpha}{2\sin\alpha.\cos\alpha}\)
c) \(P=\cot x+\dfrac{\sin x}{1+\cos x}\)
Đơn giản biểu thức
tan2 x(2cos2x+sin2x-1)+cos2x
=\(\frac{1-cos2a}{1+cos2a}\)\(\left(1+cos2a+\frac{1-cos2a}{2}-1\right)\)+\(\frac{1+cos2a}{2}\)
=\(\frac{1-cos2a}{1+cos2a}\)\(\left(cos2a+\frac{1-cos2a}{2}\right)\)+\(\frac{1+cos2a}{2}\)
=\(\frac{1-cos2a}{1+cos2a}\)\(\left(\frac{2cos2a+1-cos2a}{2}\right)\)+\(\frac{1+cos2a}{2}\)
=\(\frac{1-cos2a}{1+cos2a}\)\(\left(\frac{1+cos2a}{2}\right)\)+\(\frac{1+cos2a}{2}\)
=\(\frac{1-cos2a}{2}\)+\(\frac{1+cos2a}{2}\)
=\(\frac{1-cos2a+1+cos2a}{2}\)
=\(\frac{2}{2}\)=1
Đơn giản biểu thức:
A = sin a - sin a cos2 a
B = sin2 36o + sin2 54o - tan25o.tan65o
1. cho x là góc nhọn, chứng minh \(\dfrac{1}{\sin^2}x\) - 1 = \(\dfrac{1}{\tan^2x}\)
2. cho \(\cos x=\dfrac{1}{3}\); tính giá trị của \(A=\dfrac{1}{\cot^2x}+1\)
3. đơn giản biểu thức: \(\tan^2\alpha-\sin^2\alpha.\tan^2\alpha\)
4.cho 00 < 900, c/m \(\dfrac{\sin^2\alpha-\cos^2\alpha+\cos^4\alpha}{\cos^2\alpha-\sin^2\alpha+\sin^4\alpha}=\tan^4\alpha\)
đơn giản biểu thức
\(\dfrac{1-\cos\alpha}{\sin^2\alpha}-\dfrac{1}{1+\cos^2\alpha}\)
Có thể coi biểu thức này không thể đơn giản được nữa (bởi vì biểu thức sau khi biến đổi cũng cồng kềnh không kém gì biểu thức ban đầu)
Chắc bạn ghi đề bài không đúng
Đơn giản biểu thức này giùm ạ :))
sin4 x + cos4 x + 2 sin2 x cos2 x