Tìm tọa độ tâm đường tròn đi qua 3 điểm A( 0;4); B( 2;4) và C( 4;0)
A. (0; 0)
B. (1; 0)
C. (3;2)
D. (1;1)
Câu 20: Trong mặt phăng tọa độ Oxy, cho điểm I(4;3), đường thăng d:3x+4y-4=0 và đường tròn (C):x²+y²-2x+6y-2=0.
a) Tìm tọa độ tâm và bán kính R của đường tròn (C).
b) Viết phương trình đường tròn có tâm I và đi qua A(-4;1)
c) Viết phương trình đườNg tròn (C') có tâm là I và cắt d tại hai điếm M, N sao cho MN =6
a) Để tìm tọa độ tâm và bán kính của đường tròn ©, ta cần viết lại phương trình của nó dưới dạng chuẩn:
\begin{align*}
x^2 + y^2 - 2x + 6y - 2 &= 0 \
\Leftrightarrow (x-1)^2 + (y+3)^2 &= 14
\end{align*}
Vậy, tọa độ tâm của đường tròn © là $(1,-3)$ và bán kính của đường tròn © là $\sqrt{14}$.
b) Đường tròn có tâm $I(4,3)$ và đi qua $A(-4,1)$ có phương trình là:
$$(x-4)^2 + (y-3)^2 = (-4-4)^2 + (1-3)^2 = 20$$
c) Để tìm phương trình đường tròn (C') có tâm là $I(4,3)$ và cắt đường thẳng $d: 3x+4y-4=0$ tại hai điểm $M$ và $N$ sao cho $MN=6$, ta có thể làm như sau:
Tìm giao điểm $H$ của đường thẳng $d$ và đường vuông góc với $d$ đi qua $I$.Tìm hai điểm $M$ và $N$ trên đường thẳng $d$ sao cho $HM=HN=3$.Xây dựng đường tròn (C') có tâm là $I$ và bán kính bằng $IN=IM=\sqrt{3^2+4^2}=5$.
Để tìm giao điểm $H$, ta cần tìm phương trình của đường thẳng vuông góc với $d$ đi qua $I$. Đường thẳng đó có phương trình là:
$$4x - 3y - 7 = 0$$
Giao điểm $H$ của đường thẳng này và $d$ có tọa độ là $(\frac{52}{25}, \frac{9}{25})$.
Để tìm hai điểm $M$ và $N$, ta có thể sử dụng công thức khoảng cách giữa điểm và đường thẳng. Khoảng cách từ điểm $H$ đến đường thẳng $d$ là:
$$d(H,d) = \frac{|3\cdot \frac{52}{25} + 4\cdot \frac{9}{25} - 4|}{\sqrt{3^2+4^2}} = \frac{1}{5}$$
Vậy, hai điểm $M$ và $N$ cách $H$ một khoảng bằng $\frac{3}{5}$ và $\frac{4}{5}$ đơn vị theo hướng vuông góc với $d$. Ta có thể tính được tọa độ của $M$ và $N$ như sau:
$$M = \left(\frac{52}{25} - \frac{4}{5}\cdot 4, \frac{9}{25} + \frac{3}{5}\cdot 3\right) = \left(\frac{12}{25}, \frac{54}{25}\right)$$
và
$$N = \left(\frac{52}{25} + \frac{4}{5}\cdot 4, \frac{9}{25} + \frac{4}{5}\cdot 3\right) = \left(\frac{92}{25}, \frac{27}{5}\right)$$
Cuối cùng, phương trình đường tròn (C') có tâm là $I(4,3)$ và cắt đường thẳng $d$ tại hai điểm $M$ và $N$ sao cho $MN=6$ là:
$$(x-4)^2 + (y-3)^2 = 5^2$$
Câu 20: Trong mặt phăng tọa độ Oxy, cho điểm I(4;3), đường thăng d:3x+4y-4=0 và đường tròn (C):x²+y²-2x+6y-2=0.
a) Tìm tọa độ tâm và bán kính R của đường tròn (C).
b) Viết phương trình đường tròn có tâm I và đi qua A(-4;1)
c) Viết phương trình đườNg tròn (C') có tâm là I và cắt d tại hai điếm M, N sao cho MN =6
Giải thích cụ thể câu c cho mình.
a: (C): x^2+y^2-2x+6y-2=0
=>x^2-2x+1+y^2+6y+9-12=0
=>(x-1)^2+(y+3)^2=12
=>I(1;-3);\(R=2\sqrt{3}\)
b: I(1;-3); A(-4;1)
=>\(IA=\sqrt{\left(-4-1\right)^2+\left(1+3\right)^2}=\sqrt{34}\)
(C1): \(\left(x-1\right)^2+\left(y+3\right)^2=34\)
Câu 20: Trong mặt phăng tọa độ Oxy, cho điểm I(4;3), đường thăng d:3x+4y-4=0 và đường tròn (C):x²+y²-2x+6y-2=0.
a) Tìm tọa độ tâm và bán kính R của đường tròn (C).
b) Viết phương trình đường tròn có tâm I và đi qua A(-4;1)
c) Viết phương trình đườNg tròn (C') có tâm là I và cắt d tại hai điếm M, N sao cho MN =6
Giải thích cụ thể câu c cho mình.
trong mặt phẳng Oxy cho 3 điểm A(1; 3), B(-1;4) và C(-3; 0) a)viết phương trình tham số đường thẳng BC b) viết phương trình đường tròn có tâm A và đi qua điểm B c) tìm tọa độ chân đường cao AH của tam giác ABC.
a.
\(\overrightarrow{BC}=\left(-2;-4\right)=-2\left(1;2\right)\Rightarrow\) đường thẳng BC nhận (1;2) là 1 vtcp
Phương trình BC: \(\left\{{}\begin{matrix}x=-1+t\\y=4+2t\end{matrix}\right.\)
b.
\(\overrightarrow{AB}=\left(-2;1\right)\Rightarrow R^2=AB^2=\left(-2\right)^2+1^2=5\)
Phương trình đường tròn: \(\left(x-1\right)^2+\left(y-3\right)^2=5\)
c.
\(\overrightarrow{AB}.\overrightarrow{BC}=-2.\left(-2\right)+1.\left(-4\right)=0\Rightarrow AB\perp BC\)
\(\Rightarrow H\) trùng B hay tọa độ H là: \(H\left(-1;4\right)\)
cho mặt phẳng tọa độ Oxy,lập pt đường tròn đi qua 2 điểm A(-1,1),B(1,-3) và có tâm nằm trên đường thẳng Δ:2x-y+1=0
cho mặt phẳng tọa độ Oxy,lập pt đường tròn đi qua 2 điểm A(-1,1),B(1,-3) và có tâm nằm trên đường thẳng Δ:2x-y+1=0
I nằm trên Δ nên I(x;2x+1)
\(IA=IB\)
=>IA^2=IB^2
=>(x+1)^2+(2x+1-1)^2=(x-1)^2+(2x+1+3)^2
=>x^2+2x+1+4x^2=x^2-2x+1+4x^2+16x+16
=>14x+17=2x+1
=>12x=-16
=>x=-4/3
=>I(-4/3;-5/3)
mà A(-1;1)
nên \(R=\sqrt{\left(-1+\dfrac{4}{3}\right)^2+\left(1+\dfrac{5}{3}\right)^2}=\dfrac{\sqrt{65}}{3}\)
=>\(\left(C\right):\left(x+\dfrac{4}{3}\right)^2+\left(y+\dfrac{5}{3}\right)^2=\dfrac{65}{9}\)
Đường tròn (C) đi qua hai điểm A(1; 2); B(3;4) và tiếp xúc với đường thẳng Δ : 3 x + y − 3 = 0 . Viết phương trình đường tròn (C), biết tâm của (C) có tọa độ là những số nguyên.
A. x 2 + y 2 − 3 x – 7 y + 12 = 0.
B. x 2 + y 2 − 6 x – 4 y + 5 = 0.
C. x 2 + y 2 − 8 x – 2 y − 10 = 0.
D. x 2 + y 2 − 2 x − 8 y + 20 = 0.
Lập phương trình đường tròn trong các trường hợp sau:
a) Có tâm \(I( - 2;4)\) và bán kính bằng 9
b) Có tâm \(I(1;2)\) và đi qua điểm \(A(4;5)\)
c) Đi qua hai điểm \(A(4;1),B(6;5)\) và có tâm nằm trên đường thẳng \(4x + y - 16 = 0\)
d) Đi qua gốc tọa độ và cắt 2 trục tọa độ tại các điểm có hoành độ a và tung độ là b
a) Ta có phương trình đường tròn là \(({C_1}):{\left( {x + 2} \right)^2} + {\left( {y - 4} \right)^2} = 81\)
b) Ta có: \(\overrightarrow {IA} = (3;3) \Rightarrow IA = 3\sqrt 2 = R\)
Suy ra phương trình đường tròn là; \({C_2}:{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} = 18\)
c) Vì tâm đường tròn nằm trên đường thẳng \(4x + y - 16 = 0\) nên có tọa độ \(I\left( {a;16 - 4a} \right)\)
Ta có: \(IA = \sqrt {{{\left( {a - 4} \right)}^2} + {{\left( {16 - 4a - 1} \right)}^2}} ,IB = \sqrt {{{\left( {a - 6} \right)}^2} + {{\left( {16 - 4a - 5} \right)}^2}} \)
A, B thuộc đường tròn nên \(IA = IB \Rightarrow \sqrt {{{\left( {a - 4} \right)}^2} + {{\left( {16 - 4a - 1} \right)}^2}} = \sqrt {{{\left( {a - 6} \right)}^2} + {{\left( {16 - 4a - 5} \right)}^2}} \)
\(\begin{array}{l} \Rightarrow {\left( {a - 4} \right)^2} + {\left( {16 - 4a - 1} \right)^2} = {\left( {a - 6} \right)^2} + {\left( {16 - 4a - 5} \right)^2}\\ \Rightarrow {\left( {a - 4} \right)^2} + {\left( {15 - 4a} \right)^2} = {\left( {a - 6} \right)^2} + {\left( {11 - 4a} \right)^2}\\ \Rightarrow - 28a = - 84 \Rightarrow a = 3\end{array}\)
Suy ra tâm đường tròn là \(I(3;4)\), bán kính \(R = IA = \sqrt {10} \)
Phương trình đường tròn trên là \(({C_3}):{\left( {x - 3} \right)^2} + {\left( {y - 4} \right)^2} = 10\)
d) Giả sử phương trình đường tròn có dạng \({x^2} + {y^2} - 2mx - 2ny + p = 0\) (với tâm \(I(m;n),R = \sqrt {{m^2} + {n^2} - p} \))
Đường tròn đi qua gốc tọa độ và cắt 2 trục tọa độ tại các điểm có hoành độ a và tung độ là b nên ta có hệ phương trình:
Ta có điều kiện \(a,b \ne 0\), vì khi bằng 0 thì trùng với gốc tọa độ
\(\left\{ \begin{array}{l}{0^2} + {0^2} - 2m.0 - 2n.0 + p = 0\\{a^2} + {0^2} - 2ma - 2n.0 + p = 0\\{0^2} + {b^2} - 2m.0 - 2nb + p = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}p = 0\\{a^2} - 2ma = 0\\{b^2} - 2nb = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}p = 0\\m = \frac{a}{2}\\n = \frac{b}{2}\end{array} \right.\)
Vậy phương trình chính tắc của đường tròn trên là \({x^2} + {y^2} - ax - by = 0\)
Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC có trung điểm của cạnh BC là điểm M(3; -1), đường thẳng chứa đường co kẻ từ đỉnh B đi qua điểm E(-1;-3) và đường thẳng AC đi qua điểm F(1;3). Tìm tọa độ các đỉnh của tam giác ABC, biết rằng điểm đối xứng của đỉnh A qua tâm đường tròn ngoại tiếp tam giác ABC là điểm D(4;-2).