Những câu hỏi liên quan
PB
Xem chi tiết
CT
1 tháng 12 2018 lúc 9:24

Bình luận (0)
KT
Xem chi tiết
DT
Xem chi tiết
NH
18 tháng 1 2018 lúc 0:41

đặt t=\(t=\sqrt[3]{1+\ln^2x}=>t^3=1+\ln^2x=>3t^2dt=\dfrac{2lnxdx}{x}=>\dfrac{lnxdx}{x}=\dfrac{3t^2}{2}dt=>\int\dfrac{3t^2tdt}{2}=\dfrac{3t^4}{8}+c\)https://www.youtube.com/channel/UCzeAuHrGhk8hUszunoNtayw

các em vào link này để luyện thi thpt quốc gia miễn phí 100% nhé. cảm ơn các em.Thầy Hòa

Bình luận (0)
TT
Xem chi tiết
GT
2 tháng 12 2016 lúc 12:25

đặt t = lnx

tôi ko biết \(\varepsilon\) trong bài là gì, tuy nhiên nếu nó là số bất kì thì xét 2 TH sau để biết đk t

TH1: \(\varepsilon\in\left(0;1\right)\)

TH2: \(\varepsilon>1\)

Bình luận (0)
TC
27 tháng 2 2017 lúc 10:11

Tích phân

Bình luận (0)
PB
Xem chi tiết
CT
19 tháng 1 2017 lúc 10:48

Đáp án A.

Bình luận (0)
NT
Xem chi tiết
DQ
6 tháng 4 2016 lúc 15:41

\(I=\frac{1}{4}\int\limits^e_1\frac{4\ln^2x-1+1}{x\left(1+2\ln x\right)}dx=\frac{1}{4}\int\limits^e_1\frac{\left(2\ln x-1\right)dx}{x}+\frac{1}{4}\int\limits^e_1\frac{dx}{x\cdot\left(1+2\ln x\right)}\)

  \(=\frac{1}{8}\int\limits^e_1\left(2\ln x-1\right)d\left(2\ln x-1\right)+\frac{1}{8}\int\limits^e_1\frac{d\left(2\ln x+1\right)}{\left(1+2\ln x\right)}\)

   \(=\left(\frac{1}{16}\left(2\ln x-1\right)^2\right)|^e_1+\frac{1}{8}\ln\left|\left(1+2\ln x\right)\right||^e_1\)

    \(=\frac{1}{8}\ln3\)

Bình luận (0)
DQ
Xem chi tiết
H24
13 tháng 5 2016 lúc 21:54

Điều kiện \(x>-0,5,y>-0,5\). lấy (i) và (ii) trừ nhau , ta được 

\(x^2+3x+ln\left(2x+1\right)-y^2-3y-ln\left(2y+1\right)=y-x\left(1\right)\)

\(\Leftrightarrow x^2+4x+ln\left(2x+1\right)=y^2+4y+ln\left(2y+1\right)\left(2\right)\)

Xét hàm số \(f\left(t\right)=t^2+4t+\ln\left(2t+1\right)\) trên khoảng \(\left(-\frac{1}{2};+\infty\right)\), ta có :

\(f'\left(t\right)=2t+4+\frac{2}{2t+1}>0\) với mọi \(\in\left(-\frac{1}{2};+\infty\right)\)

vậy hàm số f(t) đồng biến trên khoản \(\left(-\frac{1}{2};+\infty\right)\) . Từ đó (1) xảy ra khi và chỉ khi x=y . Thay vào phương trình (i) được \(x^2+2x+ln\left(2x+1\right)=0.\)(3) . Dễ thấy x=0 thỏa mãn(3) . xét hàm số g(x)=\(x^2+2x+ln\left(2x+1\right)\). Ta có 

                                    \(g'\left(x\right)=2x+2+\frac{2}{2x+1}>0\veebar x>-\frac{1}{2}\)

vậy hàm g(x) đồng biến \(\left(-\frac{1}{2};+\infty\right)\), suy ra x=0 là nghiệm duy nhất của (3) . Hệ phương trình ban đầu có nghiệm duy nhất (x;y)=(0;0)

Bình luận (0)
NV
Xem chi tiết
NL
9 tháng 9 2021 lúc 15:46

1.

\(y'=\left(\dfrac{x}{lnx}\right)'.3^{\dfrac{x}{lnx}}.ln3=\dfrac{lnx-1}{ln^2x}.3^{\dfrac{x}{lnx}}.ln3\)

2.

\(y'=\left(tanx\right)'.tanx+\left(tanx\right)'.\dfrac{1}{tanx}=\dfrac{tanx}{cos^2x}+\dfrac{1}{tanx.cos^2x}\)

3.

\(y=\left(ln2x\right)^{\dfrac{2}{3}}\Rightarrow y'=\left(ln2x\right)'.\dfrac{2}{3}.\left(ln2x\right)^{-\dfrac{1}{3}}=\dfrac{1}{3x\sqrt[3]{ln2x}}\)

Bình luận (2)
H24
Xem chi tiết
HM
24 tháng 8 2023 lúc 8:51

a, ĐK: \(x+1>0\Leftrightarrow x>-1\)

\(log\left(x+1\right)=2\\ \Leftrightarrow x+1=10^2\\ \Leftrightarrow x+1=100\\ \Leftrightarrow x=99\left(tm\right)\)

b, ĐK: \(\left\{{}\begin{matrix}x-3>0\\x>0\end{matrix}\right.\Rightarrow x>3\)

\(2log_4x+log_2\left(x-3\right)=2\\ \Leftrightarrow log_2x+log_2\left(x-3\right)=2\\ \Leftrightarrow log_2\left(x^2-3x\right)=2\\ \Leftrightarrow x^2-3x=4\\ \Leftrightarrow x^2-3x-4=0\\ \Leftrightarrow\left(x+1\right)\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\left(ktm\right)\\x=4\left(tm\right)\end{matrix}\right.\)

Bình luận (0)
HM
24 tháng 8 2023 lúc 8:55

c, ĐK: \(x>1\)

\(lnx+ln\left(x-1\right)=ln4x\\ \Leftrightarrow ln\left[x\left(x-1\right)\right]-ln4x=0\\ \Leftrightarrow ln\left(\dfrac{x-1}{4}\right)=0\\ \Leftrightarrow\dfrac{x-1}{4}=1\\ \Leftrightarrow x-1=4\\ \Leftrightarrow x=5\left(tm\right)\)

d, ĐK: \(\left\{{}\begin{matrix}x^2-3x+2>0\\2x-4>0\end{matrix}\right.\Rightarrow x>2\)

\(log_3\left(x^2-3x+2\right)=log_3\left(2x-4\right)\\ \Leftrightarrow x^2-3x+2=2x-4\\ \Leftrightarrow x^2-5x+6=0\\ \Leftrightarrow\left(x-2\right)\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(ktm\right)\\x=3\left(tm\right)\end{matrix}\right.\)

Bình luận (0)
PB
Xem chi tiết
CT
30 tháng 1 2018 lúc 12:41

Chọn đáp án C

Bình luận (0)