Cho hai số thực x, y thỏa mãn 2 x + 1 + ( 1 - 2 y ) i = 2 ( 2 - i ) + y i - x khi đó giá trị của x 2 - 3 x y - y bằng:
A. -1.
B. 1.
C. -2.
D. -3.
1) cho các số thực dương a,b thỏa mãn \(3a+b\le1\). Tìm Min của \(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\)
2) Với hai số thực a,b không âm thỏa mãn \(a^2+b^2=4\). Tìm Max \(M=\dfrac{ab}{a+b+2}\)
3) Cho x,y khác 0 thỏa mãn \(\left(x+y\right)xy=x^2+y^2-xy\). Tìm Max \(A=\dfrac{1}{x^3}+\dfrac{1}{y^3}\)
1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:
\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).
Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).
2.
\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)
Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)
\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )
\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)
\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)
Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)
3. Chia 2 vế giả thiết cho \(x^2y^2\)
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)
\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)
\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
Cho hai số thực x, y thỏa mãn x^2 + y^2 - 2x - 4y + 6 = 1 - (x - y + 1)^2. Tính giá trị biểu thức A = 2022x + 2023y
x^2+y^2-2x-4y+6=1-(x-y+1)^2
=>x^2-2x+1+y^2-4y+4=-(x-y+1)^2
=>(x-1)^2+(y-2)^2=-(x-y+1)^2
=>(x-1)^2+(y-2)^2+(x-y+1)^2=0
=>x=1;y=2
A=2022+2023*2
=2022+4046
=6068
Cho hai số thực x,y thỏa mãn \(x+y\le1\). Tìm GTNN của
\(M=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\sqrt{1+x^2y^2}\)
Lời giải:
Áp dụng BĐT AM-GM:
$M\geq 2\sqrt{\frac{1}{xy}}.\sqrt{1+x^2y^2}=2\sqrt{\frac{x^2y^2+1}{xy}}$
$=2\sqrt{xy+\frac{1}{xy}}$
Áp dụng BĐT AM-GM tiếp:
$1\geq x+y\geq 2\sqrt{xy}\Rightarrow xy\leq \frac{1}{4}$
$xy+\frac{1}{xy}=(xy+\frac{1}{16xy})+\frac{15}{16xy}$
$\geq 2\sqrt{xy.\frac{1}{16xy}}+\frac{15}{16xy}$
$\geq 2\sqrt{\frac{1}{16}}+\frac{15}{16.\frac{1}{4}}=\frac{17}{4}$
$\Rightarrow M\geq 2\sqrt{\frac{17}{4}}=\sqrt{17}$
Vậy $M_{\min}=\sqrt{17}$. Giá trị này đạt tại $x=y=\frac{1}{2}$
Cho hai số thực x,y thỏa mãn \(x-3\sqrt{x+1}=3\sqrt{y+2}-y\). GTLN của biểu thức P=x+y
Từ giả thiết ta có:
\(x+y=3\left(\sqrt{x+1}+\sqrt{y+2}\right)\le3\sqrt{2\left(x+y+3\right)}\)
\(\Leftrightarrow P\le3\sqrt{2\left(P+3\right)}\)
\(\Leftrightarrow\left\{{}\begin{matrix}P\ge0\\18P+54\ge P^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}P\ge0\\P^2-18P-54\le0\end{matrix}\right.\)
\(\Leftrightarrow0\le P\le9+3\sqrt{15}\)
\(\Rightarrow maxP=9+3\sqrt{15}\Leftrightarrow\left(x;y\right)=\left(\dfrac{10+3\sqrt{15}}{2};\dfrac{8+3\sqrt{15}}{2}\right)\)
Cho x,y là hai số thực thỏa mãn xy+\(\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\) =1
Tính giá trị của biểu thức M=(x+\(\sqrt{1+y^2}\))(y+\(\sqrt{1+x^2}\))
Lời giải:
$xy+\sqrt{(1+x^2)(1+y^2)}=1$
$\Leftrightarrow \sqrt{(1+x^2)(1+y^2)}=1-xy$
$\Rightarrow (1+x^2)(1+y^2)=(1-xy)^2$ (bp 2 vế)
$\Leftrightarrow x^2+y^2=-2xy$
$\Leftrightarrow (x+y)^2=0\Leftrightarrow x=-y$.
Khi đó:
$M=(x+\sqrt{1+(-x)^2})(-x+\sqrt{1+x^2})=(\sqrt{1+x^2}+x)(\sqrt{1+x^2}-x)$
$=1+x^2-x^2=1$
Cho hai số thực x và y thỏa mãn \(x^2+y^2=1+xy\). Tìm giá trị nhỏ nhất của \(A=x^4+y^4-x^2y^2\)
Cho x, y là hai số thực thỏa mãn: x^2+xy+y^2= 3(y-1). Tính giá trị của biểu thức: A= (2x+y-1)^2016+(x-y+2)^2017+1009y
Cho hai số thực x và y thỏa mãn x, y > 0 và xy = 1.
Tìm giá trị nhỏ nhất của biểu thức A = \(\dfrac{1}{(1+x)^2} + \dfrac{1}{(1+y)^2}\)
A>=1/(1+xy)=1/2
Dấu = xảy ra khi x=y=1
cho x,y là hai số thực không âm thỏa mãn (x+1)(y+1)=9. tính giá trị nhỏ nhất,lớn nhất của biểu thức k= x^2+y^2
\(\left(x+1\right)\left(y+1\right)=9\)
\(\Rightarrow xy+x+y+1=9\)
\(\Rightarrow xy+x+y=8\)
\(\Rightarrow x+y=8-xy\left(1\right)\)
\(K=x^2+y^2\)
\(\Rightarrow K=\left(x+y\right)^2-2xy=\left(8-xy\right)^2-2xy\)
\(\Rightarrow K=64-16xy+\left(xy\right)^2-2xy\)
\(\Rightarrow K=\left(xy\right)^2-18xy+64\)
\(\Rightarrow K=\left(xy\right)^2-18xy+81-17\)
\(\Rightarrow K=\left(xy-9\right)^2-17\ge-17\left(\left(xy-9\right)^2\ge0,\forall x;y\right)\)
\(\Rightarrow GTNN\left(K\right)=-17\)
Bài 1. Tìm các số thực x thỏa mãn: |x − 1| = 2x − 1
Bài 2. Tìm các số thực x thỏa mãn: |3x − 1| + |x − 2| = 4
Bài 3. Tìm các số thực x thỏa mãn: |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36
Bài 4. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0