Những câu hỏi liên quan
TL
Xem chi tiết
NT
24 tháng 2 2022 lúc 19:48

2: \(\text{Δ}=1^2-4\cdot\left(-1\right)\cdot\left(-m\right)=1-4m\)

Để bất phương trình vô nghiệm thì \(\left\{{}\begin{matrix}1-4m< 0\\-1< 0\end{matrix}\right.\Leftrightarrow m>\dfrac{1}{4}\)

Bình luận (0)
H24
Xem chi tiết
AH
22 tháng 12 2022 lúc 23:02

Lời giải:

$f(x)=m^2(x^4-1)+m(x^2-1)-6(x-1)=(x-1)[m^2(x+1)(x^2+1)+m(x+1)-6]$

Để $f(x)\geq 0$ với mọi $x\in\mathbb{R}$ thì:
$m^2(x+1)(x^2+1)+m(x+1)-6=Q(x)(x-1)^k$ với $k$ là số lẻ

$\Rightarrow h(x)=m^2(x+1)(x^2+1)+m(x+1)-6\vdots x-1$

$\Rightarrow h(1)=0$

$\Leftrightarrow 4m^2+2m-6=0$

$\Leftrightarrow 2m^2+m-3=0$

$\Leftrightarrow (m-1)(2m+3)=0\Rightarrow m=1$ hoặc $m=\frac{-3}{2}$

Thay các giá trị trên vào $f(x)$ ban đầu thì $m\in \left\{1; \frac{-3}{2}\right\}$

Tổng các giá trị của các phần tử thuộc $S$: $1+\frac{-3}{2}=\frac{-1}{2}$

Bình luận (0)
PB
Xem chi tiết
CT
12 tháng 10 2019 lúc 3:00

Bình luận (0)
PB
Xem chi tiết
CT
13 tháng 8 2019 lúc 13:54

Đáp án B

Điều kiện  x + 5 ≥ 0 4 − x ≥ 0 ⇔ − 5 ≤ x ≤ 4

Xét hàm số  f x = x + 5 + 4 − x ; x ∈ − 5 ; 4

Ta có:

f ' x = 1 2 x + 5 − 1 2 4 − x ; f ' x = 0 ⇔ 4 − x = x + 5 ⇔ x = − 1 2

Tính các giá trị  f − 5 = 3 ; f 4 = 3 ; f − 1 2 = 3 2

⇒ max − 5 ; 4 f x = f − 1 2 = 3 2

Vậy để phương trình m ≤ f x  có nghiệm  m ≤ max − 5 ; 4 f x ⇔ m ≤ 3 2

Bình luận (0)
PB
Xem chi tiết
CT
2 tháng 3 2019 lúc 11:34

Bình luận (0)
PB
Xem chi tiết
CT
27 tháng 5 2018 lúc 5:28

Đáp án A

Tập xác định của hàm số:  D = 0 ; 4

Ø  Xét tử số, đặt  g x = x x + x + 12

Em thấy  g x > 0     ∀ x ∈ 0 ; 4 g ' x = 3 x 2 x + 1 2 x + 12 > 0 ⇒ g x  là hàm dương và đồng biến trên [0;4]

Ø  Xét mẫu số, xét  h x = 5 − x + 4 − x

Em thấy  h x > 0     ∀ x ∈ 0 ; 4 h ' x = − 1 2 5 − x + − 1 2 4 − x < 0

=> h(x) là hàm dương và nghịch biến trên [0;4]

=>  1 h x là hàm đồng biến trên [0;4] ⇒ y = g x . 1 h x  là hàm đồng biến trên [0;4]

 

⇒ maxy = y 4 = 12 ;    miny = y 0 = 2 15 − 4 3

Bình luận (0)
PB
Xem chi tiết
CT
5 tháng 6 2019 lúc 1:57

Bình luận (0)
TN
Xem chi tiết
NL
20 tháng 1 2021 lúc 19:35

Câu 2 bạn ghi thiếu đề

Câu 1:

\(\Leftrightarrow\left(m^2-3m\right)x+2x< 2-m\)

\(\Leftrightarrow\left(m^2-3m+2\right)x< 2-m\)

BPT đã cho vô nghiệm khi và chỉ khi:

\(\left\{{}\begin{matrix}m^2-3m+2=0\\2-m\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\\m\ge2\end{matrix}\right.\) \(\Rightarrow m=2\)

Bình luận (0)
PB
Xem chi tiết
CT
14 tháng 11 2019 lúc 11:24

Chọn C

Bình luận (0)