Cho ΔABC vuông tại A, biết (AB) ⃗.(CB) ⃗=4, (AC) ⃗.(BC) ⃗=9. Khi đó AB, AC, BC có độ dài là
A. 2; 3; √13. B. 3; 4; 5. C. 2; 4; 2√5. D. 4; 6; 2√13.
Cho ΔABC có BC = AC = 5cm, AB = 6cm. Kẻ CH vuông góc AB tại H.
a) Tính độ dài CH.
b) Kẻ HD vuông góc AC tại D, kẻ HE vuông góc CB tại E. Tính độ dài HD và HE.
Cho ΔABC vuông tại A có đường cao AH, (H thuộc cạnh BC). Biết \(\dfrac{AB}{AC}=\dfrac{3}{4}\) và
AH \(=\dfrac{12}{5}a\) . Tính theo a độ dài BC.
Áp dung hệ thức lượng trong tam giác vuông ABC :
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{AB^2+AC^2}{AB^2\cdot AC^2}\)
\(\Leftrightarrow AH=\dfrac{\sqrt{AB^2+AC^2}}{AB\cdot AC}\)
\(\Leftrightarrow AH=\dfrac{\sqrt{AB^2+\left(\dfrac{4AB}{3}\right)^2}}{AB\cdot\dfrac{4AB}{3}}=\dfrac{5AB}{4}\)
\(\Rightarrow AB=\dfrac{4\cdot\dfrac{12}{5a}}{5}=\dfrac{48}{25}a\)
\(BC=\dfrac{AB\cdot AC}{AH}=\dfrac{AB\cdot\dfrac{4}{3}AB}{\dfrac{5}{4}\cdot AB}=\dfrac{16}{15}AB=\dfrac{16}{15}\cdot\dfrac{48}{25}\cdot a=2.048a\)
Cho ΔABC vuông tại A có A B = 3 log a 8 , A C = 5 log 25 36 . Biết độ dài BC = 10 thì giá trị a bằng:
A. 3
B. 1/3
C. 9
D. 3
Cho ΔABC vuông tại B. Tính độ dài AB biết AC=12 cm,BC=8cm
Áp dụng định lý pitago ta có
\(AC^2=AB^2+BC^2\)
\(AB^2=AC^2-BC^2\)
\(AB=\sqrt{12^2-8^2}=\sqrt{80}=4\sqrt{5}cm\)
Dùng py ta go ta có AC2-BC2=AB2=122-82=144-64=80=4 căn 5
Chúc em học tốt
\(\overrightarrow{AB}.\overrightarrow{CB}+\overrightarrow{AC}.\overrightarrow{BC}=12\)
\(\Leftrightarrow\overrightarrow{BC}\left(\overrightarrow{AC}-\overrightarrow{AB}\right)=12\)
\(\Leftrightarrow\overrightarrow{BC}.\overrightarrow{BC}=12\)
\(\Rightarrow BC^2=12\Rightarrow BC=2\sqrt{3}\)
Cho ΔABC vuông tại A , đường cao AH ( H∈BC). Biết AC = 8cm, BC =10cm . Tính độ dài các đoạn thẳng AB, BH , CH và AH
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AB^2=10^2-8^2=36\)
hay AB=6(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AB\cdot AC=AH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{36}{10}=3.6\left(cm\right)\\CH=\dfrac{64}{10}=6.4\left(cm\right)\\AH=\dfrac{6\cdot8}{10}=4.8\left(cm\right)\end{matrix}\right.\)
Cho ΔABC vuông tại B biết: BC=2a; góc A=45°: a) Tính độ dài cạnh AB; AC b) Kẻ BH vuông góc AC. Tính BH=? c) Tính diện tích ΔABC d) Tính chu vi ΔABC e) Tính bán kính đường tròn ngoại tiếp ΔABC
a: ΔBAC vuông tại B có góc A=45 độ
nên ΔBAC vuông cân tại B
=>BA=BC=2a
AC=căn AB^2+BC^2=2a*căn 2
b: BH=BA*BC/AC=4a^2/2*a*căn 2=a*căn 2
c: S ABC=1/2*2a*2a=2a^2
d: C=2a+2a+2a*căn 2=4a+2a*căn 2
Cho ΔABC có hai trung tuyến kẻ từ A và B vuông góc với nhau. Khi đó giá trị lớn nhất của \(S=\dfrac{AC+BC}{AB}\) là
A. 3,2
B. 3, 17
C. 3,16
D. 3,15
Đặt \(\left(BC;CA;AB\right)=\left(a;b;c\right)\)
Kẻ hai trung tuyến AM, CN cắt nhau tại G
\(AG^2=\dfrac{4}{9}AM^2=\dfrac{1}{9}\left(2b^2+2c^2-a^2\right)\)
\(BG^2=\dfrac{4}{9}BN^2=\dfrac{1}{9}\left(2a^2+2c^2-b^2\right)\)
Pitago tam giác vuông ABG:
\(AG^2+BG^2=AB^2\Leftrightarrow\dfrac{1}{9}\left(2b^2+2c^2-a^2+2a^2+2c^2-b^2\right)=c^2\)
\(\Leftrightarrow a^2+b^2=5c^2\Leftrightarrow5=\dfrac{a^2+b^2}{c^2}\ge\dfrac{\left(a+b\right)^2}{2c^2}\)
\(\Rightarrow S=\dfrac{a+b}{c}\le\sqrt{10}\)