Những câu hỏi liên quan
NV
Xem chi tiết
AH
29 tháng 4 2023 lúc 16:10

Bài 1: ĐKXĐ: $2\leq x\leq 4$
PT $\Leftrightarrow (\sqrt{x-2}+\sqrt{4-x})^2=2$

$\Leftrightarrow 2+2\sqrt{(x-2)(4-x)}=2$
$\Leftrightarrow (x-2)(4-x)=0$

$\Leftrightarrow x-2=0$ hoặc $4-x=0$

$\Leftrightarrow x=2$ hoặc $x=4$ (tm)

Bình luận (0)
AH
29 tháng 4 2023 lúc 16:47

Bài 2:
PT $\Leftrightarrow 4x^3(x-1)-3x^2(x-1)+6x(x-1)-4(x-1)=0$

$\Leftrightarrow (x-1)(4x^3-3x^2+6x-4)=0$
$\Leftrightarrow x=1$ hoặc $4x^3-3x^2+6x-4=0$

Với $4x^3-3x^2+6x-4=0(*)$

Đặt $x=t+\frac{1}{4}$ thì pt $(*)$ trở thành:
$4t^3+\frac{21}{4}t-\frac{21}{8}=0$

Đặt $t=m-\frac{7}{16m}$ thì pt trở thành:

$4m^3-\frac{343}{1024m^3}-\frac{21}{8}=0$
$\Leftrightarrow 4096m^6-2688m^3-343=0$

Coi đây là pt bậc 2 ẩn $m^3$ và giải ta thu được \(m=\frac{\sqrt[3]{49}}{4}\) hoặc \(m=\frac{-\sqrt[3]{7}}{4}\)

Khi đó ta thu được \(x=\frac{1}{4}(1-\sqrt[3]{7}+\sqrt[3]{49})\)

 

Bình luận (0)
NV
29 tháng 4 2023 lúc 17:11

Nãy mình tìm được một cách giải tương tự cho câu 2.

PT \(\Leftrightarrow\left(x-1\right)\left(4x^3-3x^2+6x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\4x^3-3x^2+6x-4=0\left(1\right)\end{matrix}\right.\)

Vậy pt có 1 nghiệm bằng 1.

\(\left(1\right)\Rightarrow8x^3-6x^2+12x-8=0\)

\(\Leftrightarrow7x^3+x^3-6x^2+12x-8=0\)

\(\Leftrightarrow\left(x-2\right)^3=-7x^3\)

\(\Leftrightarrow x-2=-\sqrt[3]{7}x\)

\(\Leftrightarrow x=\dfrac{2}{1+\sqrt[3]{7}}\)

Vậy pt có nghiệm \(S=\left\{1;\dfrac{2}{1+\sqrt[3]{7}}\right\}\)

Lưu ý: Nghiệm của người kia hoàn toàn tương đồng với nghiệm của mình (\(\dfrac{2}{1+\sqrt[3]{7}}=\dfrac{1}{4}\left(1-\sqrt[3]{7}+\sqrt[3]{49}\right)\))

Bình luận (0)
H24
Xem chi tiết
NT
10 tháng 1 2022 lúc 9:27

Chọn D

Bình luận (0)
HH
Xem chi tiết
NT
24 tháng 7 2021 lúc 14:03

\(\left|x-5\right|=2x\)ĐK : x>=0 

TH1 : x - 5 = 2x <=> x = -5 ( loại )

TH2 : x - 5 = -2x <=> 3x = 5 <=> x = 5/3 ( tm )

Vậy tập nghiệm pt là S = { 5/3 } 

\(\left(x-2\right)^2+2\left(x-1\right)\le x^2+4\)

\(\Leftrightarrow x^2-4x+4+2x-2-x^2-4\le0\)

\(\Leftrightarrow-2x-2\le0\Leftrightarrow x+1\ge0\Leftrightarrow x\ge-1\)

Vậy tập nghiệm bft là S = { x | x > = -1 } 

Bình luận (0)
NT
25 tháng 7 2021 lúc 0:05

Ta có: \(\left|x-5\right|=2x\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=2x\left(x\ge5\right)\\x-5=-2x\left(x< 5\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-2x=5\\x+2x=5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-x=5\\3x=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\left(loại\right)\\x=\dfrac{5}{3}\left(nhận\right)\end{matrix}\right.\)

Bình luận (0)
CT
Xem chi tiết
NA
6 tháng 4 2020 lúc 15:01

hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Bình luận (0)
 Khách vãng lai đã xóa
PH
7 tháng 4 2020 lúc 11:24

,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Bình luận (0)
 Khách vãng lai đã xóa
PT
12 tháng 4 2020 lúc 15:10

Mình không biết sin lỗi vạn

Bình luận (0)
 Khách vãng lai đã xóa
HQ
Xem chi tiết
NT
31 tháng 7 2023 lúc 10:10

1B

2D

3A

4A

5B

6:

a: \(A=\dfrac{14+2}{3}=\dfrac{16}{3}\)

b: P=A*B

\(=\dfrac{x+2}{3}\cdot\dfrac{2x^2+6x-2x^2-3x-9}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{x+2}{3}\cdot\dfrac{3x-9}{\left(x-3\right)\left(x+3\right)}=\dfrac{x+2}{x+3}\)

Bình luận (0)
HT
Xem chi tiết
KY
18 tháng 9 2019 lúc 20:20

\(\frac{9}{x^2-4}=\frac{x-1}{x+2}+\frac{3}{x-2}\)

\(ĐKXĐ:x\ne\pm2\)

\(pt\Leftrightarrow\frac{9}{x^2-4}=\frac{x^2-3x+2}{x^2-4}+\frac{3x+6}{x^2-4}\)

\(\Leftrightarrow\frac{9}{x^2-4}=\frac{x^2+8}{x^2-4}\)

\(\Leftrightarrow x^2+8=9\Leftrightarrow x=\pm1\left(tm\right)\)

Vậy pt có 2 nghiệm là 1 và -1

Bình luận (0)
KS
18 tháng 9 2019 lúc 20:26

Điều kện :  \(x+2\ne0\) và \(x-2\ne0\Leftrightarrow x=\pm2\)

( Khi đó \(x^2-4=\left(x+2\right)\left(x-2\right)\ne0\) )

\(\frac{9}{x^2-4}=\frac{x-1}{x+2}+\frac{3}{x-2}\)

\(\Leftrightarrow\frac{9}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x-1\right)\left(x-2\right)+3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(\Rightarrow x^2-3x+2+3x+6=9\Leftrightarrow x^2=1\Leftrightarrow x=\pm1\)

Vậy tập nghiệm của PT là: \(S=\left\{-1;1\right\}\)

Chúc bạn học tốt !!!

Bình luận (0)
H9
Xem chi tiết
NT
15 tháng 9 2023 lúc 11:52

1) \(-2x^2+x+1-2\sqrt[]{x^2+x+1}=0\)

\(\Leftrightarrow2\sqrt[]{x^2+x+1}=-2x^2+x+1\left(1\right)\)

Ta có :

\(2\sqrt[]{x^2+x+1}=2\sqrt[]{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\ge\sqrt[]{3}\)

Dấu "=" xảy ra khi và chỉ khi \(x+\dfrac{1}{2}=0\Leftrightarrow x=-\dfrac{1}{2}\)

\(\left(1\right)\Leftrightarrow-2x^2+x+1=\sqrt[]{3}\)

\(\Leftrightarrow2x^2-x+\sqrt[]{3}-1=0\)

\(\Delta=1-8\left(\sqrt[]{3}-1\right)=9-8\sqrt[]{3}\)

\(pt\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt[]{9-8\sqrt[]{3}}}{4}\left(loại\right)\\x=\dfrac{1-\sqrt[]{9-8\sqrt[]{3}}}{4}\left(loại\right)\end{matrix}\right.\) \(\left(vì.x=-\dfrac{1}{2}\right)\)

Vậy phương trình cho vô nghiệm

Bình luận (0)
AN
Xem chi tiết
AN
13 tháng 2 2020 lúc 21:44

Ai làm đc câu nào thì làm giúp mình với ạ, cảm ơn trc:(((

Bình luận (0)
 Khách vãng lai đã xóa
NT
14 tháng 2 2020 lúc 13:01

\(1,3x-5x+5=-8\)

\(\Leftrightarrow-2x+5+8=0\)

\(\Leftrightarrow-2x=-13\)

\(\Leftrightarrow x=\frac{13}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
CN
Xem chi tiết
H24
27 tháng 11 2021 lúc 21:14

\(\left(1+x\sqrt{x^2+1}\right)\left(\sqrt{x^2+1}-x\right)=1\)

\(\Rightarrow\dfrac{1+x\sqrt{x^2+1}}{\sqrt{x^2+1}+x}=1\)

\(\Rightarrow1+x\sqrt{x^2+1}=\sqrt{x^2+1}+x\)

\(\Rightarrow1+x\sqrt{x^2+1}-\sqrt{x^2+1}-x=0\)

\(\Rightarrow-\left(x-1\right)+\left(x-1\right)\sqrt{x^2+1}=0\)

\(\Rightarrow\left(x-1\right)\left(\sqrt{x^2+1}-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\sqrt{x^2+1}-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\\sqrt{x^2+1}=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x^2+1=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\)

 

Bình luận (0)
NM
27 tháng 11 2021 lúc 21:27

\(a,2y^2-x+2xy=y+4\\ \Leftrightarrow2y\left(x+y\right)-\left(x+y\right)=4\\ \Leftrightarrow\left(2y-1\right)\left(x+y\right)=4=4\cdot1=\left(-4\right)\left(-1\right)=\left(-2\right)\left(-2\right)=2\cdot2\)

Vì \(x,y\in Z\Leftrightarrow2y-1\) lẻ 

\(\left\{{}\begin{matrix}2y-1=1\\x+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2y-1=-1\\x+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\)

Vậy PT có nghiệm \(\left(x;y\right)=\left\{\left(3;1\right);\left(4;0\right)\right\}\)

Bình luận (0)