Những câu hỏi liên quan
HD
Xem chi tiết
H24
Xem chi tiết
NT
19 tháng 1 2022 lúc 13:47

a: Xét ΔABD có 

M là tđiểm của AB

Q là tđiểm của AD
Do đó:MQ là đường trung bình

=>MQ//BD và MQ=BD/2(1)

Xét ΔBCD có

N là tđiểm của BC

P là tđiểm của CD

Do đó: NP là đường trung bình

=>NP=BD/2 và NP//BD(2)

Xét ΔABC có 

M là tđiểm của AB

N là tđiểm của BC

Do đó: MN là đường trung bình

=>MN=AC/2=BD/2(3)

Từ (1) và (3) suy ra MN=MQ

Từ (1) và (2) suy ra MQ//NP và MQ=NP

hay MQPN là hình bình hành

mà MN=MQ

nên MQPN là hình thoi

 

Bình luận (0)
NH
Xem chi tiết
NT
26 tháng 8 2023 lúc 13:42

Xét Δ AQN và Δ MBN có :

\(\widehat{QAM}=\widehat{MBN}=90^o\)

\(AM=BM\) (M là trung điểm AB)

\(AQ=BN\) (Q;N là trung điểm AD;BC và AD=BC)

⇒ Δ AQN và Δ MBN (cạnh, góc, cạnh)

\(\Rightarrow QM=MN\left(1\right)\)

Chứng minh tương tự :

- Δ AQN và Δ QDP (cạnh, góc, cạnh) \(\Rightarrow QM=QP\left(2\right)\)

- Δ PNC và Δ QDP (cạnh, góc, cạnh) \(\Rightarrow PN=QP\left(3\right)\)

- Δ PNC và Δ MBN  (cạnh, góc, cạnh) \(\Rightarrow PN=MN\left(4\right)\)

\(\left(1\right);\left(2\right);\left(3\right);\left(4\right)\Rightarrow QM=MN=PN=QP\)

⇒ Tứ giác MNQP là hình thoi (dpcm)

Bình luận (0)
H24
Xem chi tiết

a) Tam giác ABC có :

MA = MB (gt)

NB = NC (gt)

nên MN là đường trung bình của tam giác ABC , do đó MN // AC và MN = 1212AC.

Chứng minh tương tự : PQ // AC và PQ = 1212AC.

Suy ra MN // PQ và MN = PQ.

Tứ giác MNPQ có hai cạnh đối vừa song song vừa bằng nhau ⇒⇒ tứ giác MNPQ là hình bình hành

b, Để MNPQ là hình vuông thì MN=NP=PQ=QM ⇒⇒ AC=BDAC=BD

Để MNPQ là hình chữ nhật thì MN phải vuông góc với MQ ⇒⇒ AC phải vuông góc với DB

Để MNPQ là hình thoi thì MP phải vuônng góc với QN ⇒⇒ AB phải vuông góc với AD

Bình luận (0)
HM
Xem chi tiết
Xem chi tiết
NT
10 tháng 12 2021 lúc 22:36

Bài 1:

Xét ΔMKQ có 

A là trung điểm của KM

B là trung điểm của KQ

Do đó: AB là đường trung bình của ΔMKQ

Suy ra: AB//MQ

Bình luận (0)
CP
Xem chi tiết
NT
19 tháng 12 2021 lúc 19:47

Xét ΔABC có 

M là trung điểm của BA

N là trung điểm của BC

Do đó: MN là đường trung bình

=>MN//AC và MN=AC/2(1)

Xét ΔADC có 

Q là trung điểm của AD

P là trung điểm của CD

Do đó: QP là đường trungb bình

=>QP//AC và QP=AC/2(2)

Từ (1) và (2) suy ra MN//PQ và MN=PQ

hay MNPQ là hình bình hành

Bình luận (0)
TL
Xem chi tiết
NT
9 tháng 1 2023 lúc 10:09

a: Xét ΔABD có AM/AB=AQ/AD

nên MQ//BD và MQ=BD/2

Xét ΔCBD có CN/CB=CP/CD

nên NP//BD và NP=BD/2

=>MQ//NP và MQ=NP

=>MNPQ là hình bình hành

b: Để mNPQ là hình chữ nhật thì MN vuông góc với MQ

=>AC vuông góc với BD

Để MNPQ là hình thoi thì MN=MQ

=>AC=BD

c: BD=3/2*AC=30cm

=>MQ=BD/2=15cm; MN=AC/2=10cm

SMNPQ=15*10=150cm2

Bình luận (0)
PB
Xem chi tiết
CT
20 tháng 6 2019 lúc 5:34

Bình luận (0)
NM
Xem chi tiết
NT
22 tháng 9 2021 lúc 15:14

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔBAC

Suy ra: MN//BC và \(MN=\dfrac{BC}{2}\left(1\right)\)

Xét ΔDBC có 

Q là trung điểm của BD

P là trung điểm của CD

Do đó: QP là đường trung bình của ΔDBC

Suy ra: QP//BC và \(QP=\dfrac{BC}{2}\left(2\right)\)

Từ (1) và (2) suy ra MN//PQ và MN=PQ

hay MNPQ là hình bình hành

Bình luận (0)