Bài 11: Hình thoi

PQ
Xem chi tiết
NT
6 tháng 12 2023 lúc 22:11

ĐIểm E ở đâu vậy bạn?

Bình luận (0)
HT
Xem chi tiết
NT
4 tháng 11 2023 lúc 18:17

a: ΔABC vuông tại A

mà AM là đường trung tuyến

nên \(AM=MB=MC=\dfrac{BC}{2}\)

Xét ΔBAM có

MA=MB

Do đó: ΔBAM cân tại M

Xét ΔMAB cân tại M có \(\widehat{MBA}=60^0\)

nên ΔMAB đều

b: ΔMAB đều

mà BH là đường cao

nên H là trung điểm của AM

Xét ΔHMN vuông tại H và ΔHAB vuông tại H có

HA=HM

\(\widehat{HMN}=\widehat{HAB}\)

Do đó: ΔHMN=ΔHAB

=>HN=HB

Xét tứ giác ABMN có

H là trung điểm chung của AM và BN

nên ABMN là hình bình hành

=>AN//MB và AN=MB

AN=MB

MB=MC

Do đó: AN=MC

AN//MB

\(M\in BC\)

Do đó: AN//MC

Xét tứ giác AMCN có

AN//CM

AN=CM

Do đó: AMCN là hình bình hành 

Hình bình hành AMCN có AC\(\perp\)MN

nên AMCN là hình thoi

c: ABMN là hình bình hành

=>\(\widehat{NMB}+\widehat{MBA}=180^0\)

=>\(\widehat{NMB}=120^0\)

Hình bình hành ABMN có NB\(\perp\)AM

nên ABMN là hình thoi

Xét ΔNMB có \(\dfrac{NB}{sinNMB}=\dfrac{BM}{sinMNB}\)

=>\(\dfrac{NB}{sin120}=\dfrac{BM}{sin30}\)

=>\(NB=BM\cdot\sqrt{3}\)

Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}\)

=>\(\dfrac{AC}{2\cdot BM}=sin60=\dfrac{\sqrt{3}}{2}\)

=>\(AC=BM\cdot\sqrt{3}\)

=>AC=NB

Bình luận (0)
HT
Xem chi tiết
NT
25 tháng 10 2023 lúc 20:10

a: ΔABC vuông tại A

mà AM là trung tuyến

nên MA=MB=MC=BC/2

Xét ΔMAB có MA=MB và \(\widehat{MBA}=60^0\)

nên ΔMAB đều

b: ΔBAM đều

mà BH là đường cao

nên H là trung điểm của AM

Xét ΔHNM vuông tại H và ΔHBA vuông tại H có

HM=HA

\(\widehat{HMN}=\widehat{HAB}\)(MN//AB)

Do đó: ΔHNM=ΔHBA

=>HN=HB

=>H là trung điểm của BN

Xét tứ giác ABMN có

H là trung điểm chung của AM và BN

BM=BA

Do đó: ABMN là hình thoi

c: ABMN là hình thoi

=>\(\widehat{NMB}=180^0-\widehat{MBA}=180^0-60^0=120^0\)

Xét ΔMNB có \(cosNMB=\dfrac{MN^2+MB^2-BN^2}{2\cdot MN\cdot MB}\)

\(\Leftrightarrow\dfrac{AB^2+AB^2-BN^2}{2\cdot AB\cdot AB}=-\dfrac{1}{2}\)

=>\(2AB^2-BN^2=-AB^2\)

=>\(BN^2=3AB^2\)

Xét ΔMAC có \(cosAMC=\dfrac{MA^2+MC^2-AC^2}{2\cdot MA\cdot MC}\)

=>\(\dfrac{AB^2+AB^2-AC^2}{2\cdot AB\cdot AB}=cos120=\dfrac{-1}{2}\)

=>\(2AB^2-AC^2=-AB^2\)

=>\(AC^2=3AB^2\)

=>\(AC^2=BN^2\)

=>AC=BN

Bình luận (0)
TT
Xem chi tiết
H9
20 tháng 10 2023 lúc 19:18

Tham khảo:

Đắm mình vẽ sơ đồ tư duy hình thoi với hình ảnh tuyệt đẹp

Bình luận (0)
H24
Xem chi tiết
NT
15 tháng 10 2023 lúc 14:33

Xét tứ giác AMDN có

AM//DN

AN//DM

Do đó: AMDN là hình bình hành

Hình bình hành AMDN có AD là phân giác của \(\widehat{MAN}\)

nên AMDN là hình thoi

Bình luận (0)
H24
Xem chi tiết
NT
15 tháng 10 2023 lúc 14:22

Đề sai rồi bạn

Bình luận (2)
H24
Xem chi tiết
NT
19 tháng 11 2023 lúc 9:45

a: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

Xét tứ giác ABDC có

H là trung điểm chung của AD và BC

nên ABDC là hình bình hành

Hình bình hành ABDC có AB=AC

nên ABDC là hình thoi

b: H là trung điểm của BC

=>\(HB=HC=\dfrac{BC}{2}=3\left(cm\right)\)

ΔAHB vuông tại H

=>\(AH^2+HB^2=AB^2\)

=>\(AH^2=5^2-3^2=16\)

=>AH=4(cm)

AD=2*AH

=>AD=2*4=8(cm)

c: 

Xét tứ giác AHCF có

E là trung điểm chung của AC và HF

nên AHCF là hình bình hành

Hình bình hành AHCF có \(\widehat{AHC}=90^0\)

nên AHCF là hình chữ nhật

=>AH\(\perp\)AF và HC\(\perp\)FC

d: ABDC là hình thoi

=>\(\widehat{BAC}=\widehat{BDC}=60^0\)

ABDC là hình thoi

=>\(\widehat{ABD}+\widehat{BAC}=180^0\)

=>\(\widehat{ABD}=120^0\)

ABDC là hình thoi

=>\(\widehat{ABD}=\widehat{ACD}=120^0\)

Bình luận (0)
H24
Xem chi tiết
ND
28 tháng 9 2023 lúc 13:13

Bài nào v ạ

Bình luận (1)
NT
19 tháng 11 2023 lúc 9:38

a: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

Xét tứ giác ABDC có

H là trung điểm chung của AD và BC

nên ABDC là hình bình hành

Hình bình hành ABDC có AB=AC

nên ABDC là hình thoi

b: H là trung điểm của BC

=>\(HB=HC=\dfrac{BC}{2}=3\left(cm\right)\)

ΔAHB vuông tại H

=>\(AH^2+HB^2=AB^2\)

=>\(AH^2=5^2-3^2=16\)

=>AH=4(cm)

AD=2*AH

=>AD=2*4=8(cm)

c: 

Xét tứ giác AHCF có

E là trung điểm chung của AC và HF

nên AHCF là hình bình hành

Hình bình hành AHCF có \(\widehat{AHC}=90^0\)

nên AHCF là hình chữ nhật

=>AH\(\perp\)AF và HC\(\perp\)FC

d: ABDC là hình thoi

=>\(\widehat{BAC}=\widehat{BDC}=60^0\)

ABDC là hình thoi

=>\(\widehat{ABD}+\widehat{BAC}=180^0\)

=>\(\widehat{ABD}=120^0\)

ABDC là hình thoi

=>\(\widehat{ABD}=\widehat{ACD}=120^0\)

Bình luận (0)
NT
19 tháng 11 2023 lúc 9:38

a: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

Xét tứ giác ABDC có

H là trung điểm chung của AD và BC

nên ABDC là hình bình hành

Hình bình hành ABDC có AB=AC

nên ABDC là hình thoi

b: H là trung điểm của BC

=>\(HB=HC=\dfrac{BC}{2}=3\left(cm\right)\)

ΔAHB vuông tại H

=>\(AH^2+HB^2=AB^2\)

=>\(AH^2=5^2-3^2=16\)

=>AH=4(cm)

AD=2*AH

=>AD=2*4=8(cm)

c: 

Xét tứ giác AHCF có

E là trung điểm chung của AC và HF

nên AHCF là hình bình hành

Hình bình hành AHCF có \(\widehat{AHC}=90^0\)

nên AHCF là hình chữ nhật

=>AH\(\perp\)AF và HC\(\perp\)FC

d: ABDC là hình thoi

=>\(\widehat{BAC}=\widehat{BDC}=60^0\)

ABDC là hình thoi

=>\(\widehat{ABD}+\widehat{BAC}=180^0\)

=>\(\widehat{ABD}=120^0\)

ABDC là hình thoi

=>\(\widehat{ABD}=\widehat{ACD}=120^0\)

Bình luận (0)