Cho biết cotx = 1/2. Giá trị biểu thức A= 2 sin 2 x - sin x . cos x - cos 2 x bằng
A. 6.
B. 8.
C. 10.
D. 12.
Cho cotx=2 . Tính giá trị của biểu thức B= sin^ 2 x-2 sin x.cos x-1 / 5cos^2 x + sin^2 x - 3
cotx=2
=>cosx=2*sin x
\(1+cot^2x=\dfrac{1}{sin^2x}\)
=>\(\dfrac{1}{sin^2x}=1+4=5\)
=>\(sin^2x=\dfrac{1}{5}\)
\(B=\dfrac{sin^2x-2\cdot sinx\cdot2\cdot sinx-1}{5\cdot4sin^2x+sin^2x-3}=\dfrac{-3sin^2x-1}{21sin^2x-3}\)
\(=\dfrac{-\dfrac{3}{5}-1}{\dfrac{21}{5}-3}=-\dfrac{8}{5}:\dfrac{6}{5}=-\dfrac{4}{3}\)
\(cotx=2\Rightarrow tanx=\dfrac{1}{2}\)
\(B=\dfrac{sin^2x-2sinx.cosx-1}{5cos^2x+sin^2x-3}\)
\(\Leftrightarrow B=\dfrac{tan^2x-2tanx-\dfrac{1}{cos^2x}}{5+tan^2x-\dfrac{3}{cos^2x}}\)
\(\Leftrightarrow B=\dfrac{tan^2x-2tanx-1-tan^2x}{5+tan^2x-3-3tan^2x}\)
\(\Leftrightarrow B=\dfrac{-2tanx-1}{2-2tan^2x}\)
\(\Leftrightarrow B=\dfrac{-2.\dfrac{1}{2}-1}{2-2.\dfrac{1}{4}}=\dfrac{-2}{\dfrac{3}{2}}=-\dfrac{4}{3}\)
Tính giá trị biểu thức:
M= sin x.cos x + \(\dfrac{sin^2x}{1+cotx}\) + \(\dfrac{cos^2x}{1+tanx}\) với 0độ<x<90độ
\(M=sinx.cosx+\dfrac{sin^2x}{1+cotx}+\dfrac{cos^2x}{1+tanx}\)
\(=sinx.cosx+\dfrac{sin^2x}{\dfrac{cosx+sinx}{sinx}}+\dfrac{cos^2x}{\dfrac{cosx+sinx}{cosx}}\)
\(=sinx.cosx+\dfrac{sin^3x+cos^3x}{cosx+sinx}\)
\(=sinx.cosx+\dfrac{\left(sinx+cosx\right)\left(sin^2x+cos^2x-sinx.cosx\right)}{cosx+sinx}\)
\(=sinx.cosx+sin^2x+cos^2x-sinx.cosx\)
\(=sin^2x+cos^2x=1\)
1)tính giá trị biểu thức:
p=tan 37 °+sin^2 28 °-3tan 52 °/cot 28 °+sin^2 62 °-cot 53 °
2) tìm góc nhọn a(alpha) biết sin a = cos a.
3) Cho biết x=3. Tính giá trị của các biểu thức sau :
a/ A=32018.cot2017x
b/ B= sin2x + 2 sin x . cos x - 5 cos2x
c/ D=1-(sin x + cos x)2 / cos2x
(mn ơi ai biết giúp mjh vs ạ) 😭
Cho cot x = 2 . Tính giá trị của biểu thức B= sin^ 2 x-2 sin x.cos x-1/5cos^2 x + sin^2 x - 3
cot x=2>0
=>sin x và cosx cùng dấu
=>sinx*cosx>0
\(1+cot^2x=\dfrac{1}{sin^2x}=1+4=5\)
=>sin^2x=1/5
=>cos^2x=4/5
\(B=\dfrac{1}{5}-2\cdot sinx\cdot cosx-\dfrac{1}{5}\cdot\dfrac{4}{5}+\dfrac{1}{5}-3\)
\(=\dfrac{2}{5}-\dfrac{4}{25}-3-2\cdot\dfrac{1}{\sqrt{5}}\cdot\dfrac{2}{\sqrt{5}}\)
\(=\dfrac{10}{25}-\dfrac{4}{25}-\dfrac{75}{25}-2\cdot\dfrac{2}{5}=\dfrac{-69}{25}-\dfrac{4}{5}=\dfrac{-89}{25}\)
13. Đơn giản biểu thức sau E = cotx + sinx / 1+cosx
17. Biết sin a= 5/13 , cos b =3/5 ( π/2 <a < π ; 0 < b < π/2). Hãy tính sin(a +b)
18. Cho cot = π/14=a. Tính K = sin 2π /7 + sin 4π/7 + sin 6π/7
\(E=\frac{cosx}{sinx}+\frac{sinx}{1+cosx}=\frac{cosx+cos^2x+sin^2x}{sinx\left(1+cosx\right)}=\frac{cosx+1}{sinx\left(1+cosx\right)}=\frac{1}{sinx}\)
17.
\(\frac{\pi}{2}< a< \pi\Rightarrow cosa< 0\Rightarrow cosa=-\sqrt{1-sin^2a}=-\frac{12}{13}\)
\(0< b< \frac{\pi}{2}\Rightarrow sinb>0\Rightarrow sinb=\sqrt{1-cos^2b}=\frac{4}{5}\)
\(sin\left(a+b\right)=sina.cosb+cosa.sinb=\frac{5}{13}.\frac{3}{5}-\frac{12}{13}.\frac{4}{5}=-\frac{33}{65}\)
18.
\(K=sin\frac{2\pi}{7}+sin\frac{6\pi}{7}+sin\frac{4\pi}{7}\)
\(\Leftrightarrow K.sin\frac{\pi}{7}=sin\frac{\pi}{7}.sin\frac{2\pi}{7}+sin\frac{\pi}{7}.sin\frac{4\pi}{7}+sin\frac{\pi}{7}.sin\frac{6\pi}{7}\)
\(=\frac{1}{2}\left(cos\frac{\pi}{7}-cos\frac{3\pi}{7}+cos\frac{\pi}{7}-cos\frac{5\pi}{7}+cos\frac{5\pi}{7}-cos\frac{7\pi}{7}\right)\)
\(=\frac{1}{2}\left(cos\frac{\pi}{7}-cos\pi\right)=\frac{1}{2}\left(cos\frac{\pi}{7}+1\right)=\frac{1}{2}\left(2cos^2\frac{\pi}{14}-1+1\right)=cos^2\frac{\pi}{14}\)
\(\Leftrightarrow K.2.sin\frac{\pi}{14}.cos\frac{\pi}{14}=cos^2\frac{\pi}{14}\)
\(\Leftrightarrow2K=\frac{cos\frac{\pi}{14}}{sin\frac{\pi}{14}}=cot\frac{\pi}{14}=a\Rightarrow K=\frac{a}{2}\)
Cho \(\cos2x=\dfrac{1}{2}\). Tính giá trị biểu thức:
\(P=\sin^22x-4\left(sin\dfrac{x}{2}.cos^5\dfrac{x}{2}-sin^5\dfrac{x}{2}.cos\dfrac{x}{2}\right)^2\)
Help me!!!!! plsssss
\(P=sin^22x-\left[2sin\dfrac{x}{2}cos\dfrac{x}{2}\left(cos^4\dfrac{x}{2}-sin^4\dfrac{x}{2}\right)\right]^2\)
\(=sin^22x-\left[sinx\left(cos^2\dfrac{x}{2}-sin^2\dfrac{x}{2}\right)\left(cos^2\dfrac{x}{2}+sin^2\dfrac{x}{2}\right)\right]^2\)
\(=sin^22x-\left[sinx.cosx.1\right]^2\)
\(=sin^22x-\left[\dfrac{1}{2}sin2x\right]^2\)
\(=\dfrac{3}{4}sin^22x=\dfrac{3}{4}\left(1-cos^22x\right)=\dfrac{3}{4}\left(1-\dfrac{1}{4}\right)=\dfrac{9}{16}\)
1. Cho biết \(cosx=\dfrac{3}{4}\). Tính giá trị của biểu thức \(P=sin^22x\).
2. Giải phương trình \(cos2x-sin\left(x+\dfrac{\pi}{3}\right)=0\)
1: \(P=sin^22x=1-cos^22x\)
\(=1-\left(cos2x\right)^2\)
\(=1-\left(2cos^2x-1\right)^2\)
\(=1-\left(2\cdot\dfrac{9}{16}-1\right)^2\)
\(=1-\left(\dfrac{9}{8}-1\right)^2=1-\left(\dfrac{1}{8}\right)^2=\dfrac{63}{64}\)
2:
\(cos2x-sin\left(x+\dfrac{\Omega}{3}\right)=0\)
=>\(sin\left(x+\dfrac{\Omega}{3}\right)=cos2x=sin\left(\dfrac{\Omega}{2}-2x\right)\)
=>\(\left[{}\begin{matrix}x+\dfrac{\Omega}{3}=\dfrac{\Omega}{2}-2x+k2\Omega\\x+\dfrac{\Omega}{3}=\Omega-\dfrac{\Omega}{2}+2x+k2\Omega\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}3x=\dfrac{\Omega}{6}+k2\Omega\\-x=\dfrac{1}{6}\Omega+k2\Omega\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\Omega}{18}+\dfrac{k2\Omega}{3}\\x=-\dfrac{1}{6}\Omega-k2\Omega\end{matrix}\right.\)
\(tana-cota=2\sqrt{3}\Rightarrow\left(tana-cota\right)^2=12\)
\(\Rightarrow\left(tana+cota\right)^2-4=12\Rightarrow\left(tana+cota\right)^2=16\)
\(\Rightarrow P=4\)
\(sinx+cosx=\dfrac{1}{5}\Rightarrow\left(sinx+cosx\right)^2=\dfrac{1}{25}\)
\(\Rightarrow1+2sinx.cosx=\dfrac{1}{25}\Rightarrow sinx.cosx=-\dfrac{12}{25}\)
\(P=\dfrac{sinx}{cosx}+\dfrac{cosx}{sinx}=\dfrac{sin^2x+cos^2x}{sinx.cosx}=\dfrac{1}{sinx.cosx}=\dfrac{1}{-\dfrac{12}{25}}=-\dfrac{25}{12}\)
Chứng minh các biểu thức sau không phụ thuộc x:
a) A = \(2\left(sin^6x+cos^6x\right)-3\left(sin^4x+cos^4x\right)\)
b) \(B=\dfrac{1+cotx}{1-cotx}-\dfrac{2}{tanx-1}\)
c) C = \(2cos^4x-sin^4x+sin^2x.cos^2x+3sin^2x\)
Giả sử các biểu thức đều có nghĩa
\(A=2\left(\left(sin^2x\right)^3+\left(cos^2x\right)^3\right)-3\left(sin^4x+cos^4x+2sin^2xcos^2x-2sin^2xcos^2x\right)\)
\(A=2\left(sin^2x+cos^2x\right)\left(\left(sin^2x+cos^2x\right)^2-3sin^2xcos^2x\right)-3\left(\left(sin^2x+cos^2x\right)^2-2sin^2xcos^2x\right)\)
\(A=2\left(1-3sin^2xcos^2x\right)-3\left(1-2sin^2xcos^2x\right)\)
\(A=2-6sin^2xcos^2x-3+6sin^2xcos^2x=-1\)
b/ \(B=\dfrac{1+cotx}{1-cotx}-\dfrac{2}{tanx-1}=\dfrac{1+cotx}{1-cotx}-\dfrac{2}{\dfrac{1}{cotx}-1}\)
\(B=\dfrac{1+cotx}{1-cotx}-\dfrac{2cotx}{1-cotx}=\dfrac{1+cotx-2cotx}{1-cotx}=\dfrac{1-cotx}{1-cotx}=1\)
c/ \(C=cos^4x-sin^4x+cos^4x+sin^2xcos^2x+3sin^2x\)
\(C=\left(cos^2x-sin^2x\right)\left(cos^2x+sin^2x\right)+cos^2x\left(cos^2x+sin^2x\right)+3sin^2x\)
\(C=cos^2x-sin^2x+cos^2x+3sin^2x\)
\(C=2cos^2x+2sin^2x=2\left(cos^2x+sin^2x\right)=2\)
biết cot a =1/2. giá trị biểu thức A = \(\dfrac{4\sin\alpha+5\cos\alpha}{2\sin\alpha-3\cos\alpha}\) bằng bao nhiêu?
mình làm r nha
https://hoc24.vn/cau-hoi/biet-cotadfrac12-gia-tri-bieu-thuc-adfrac4sinalpha5cosalpha2sinalpha-3cosalpha-bang-bao-nhieughi-ro-tung-loi-giai-nha.5724337531039